L(s) = 1 | + (0.222 − 0.974i)2-s + (0.974 − 1.22i)3-s + (−0.900 − 0.433i)4-s + (−0.974 − 1.22i)6-s + (−0.781 − 0.623i)7-s + (−0.623 + 0.781i)8-s + (−0.321 − 1.40i)9-s + (0.433 − 1.90i)11-s + (−1.40 + 0.678i)12-s + (−0.0990 + 0.433i)13-s + (−0.781 + 0.623i)14-s + (0.623 + 0.781i)16-s + (−0.900 + 0.433i)17-s − 1.44·18-s + (−1.52 + 0.347i)21-s + (−1.75 − 0.846i)22-s + ⋯ |
L(s) = 1 | + (0.222 − 0.974i)2-s + (0.974 − 1.22i)3-s + (−0.900 − 0.433i)4-s + (−0.974 − 1.22i)6-s + (−0.781 − 0.623i)7-s + (−0.623 + 0.781i)8-s + (−0.321 − 1.40i)9-s + (0.433 − 1.90i)11-s + (−1.40 + 0.678i)12-s + (−0.0990 + 0.433i)13-s + (−0.781 + 0.623i)14-s + (0.623 + 0.781i)16-s + (−0.900 + 0.433i)17-s − 1.44·18-s + (−1.52 + 0.347i)21-s + (−1.75 − 0.846i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.801 - 0.598i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.801 - 0.598i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.441968462\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.441968462\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.222 + 0.974i)T \) |
| 7 | \( 1 + (0.781 + 0.623i)T \) |
| 17 | \( 1 + (0.900 - 0.433i)T \) |
good | 3 | \( 1 + (-0.974 + 1.22i)T + (-0.222 - 0.974i)T^{2} \) |
| 5 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 11 | \( 1 + (-0.433 + 1.90i)T + (-0.900 - 0.433i)T^{2} \) |
| 13 | \( 1 + (0.0990 - 0.433i)T + (-0.900 - 0.433i)T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (-1.75 - 0.846i)T + (0.623 + 0.781i)T^{2} \) |
| 29 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 31 | \( 1 + 1.56T + T^{2} \) |
| 37 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 41 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 43 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 47 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 53 | \( 1 + (1.12 + 0.541i)T + (0.623 + 0.781i)T^{2} \) |
| 59 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 61 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (-1.40 - 0.678i)T + (0.623 + 0.781i)T^{2} \) |
| 73 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 79 | \( 1 - 1.94T + T^{2} \) |
| 83 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 89 | \( 1 + (-0.277 - 1.21i)T + (-0.900 + 0.433i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.524691492170903427233193785782, −7.79085357911255892002101448776, −6.75910726388546770122495843532, −6.33568483139966082694483107763, −5.29932559112299617042797391408, −3.95971669711100366207224469614, −3.40085986949927219624964267328, −2.73343573491181054499224866888, −1.68636441992371162168697999859, −0.71123287276723704805990679413,
2.27245219337206432788446173304, 3.19682426352975954174877618798, 3.89270618416553483477381123303, 4.84200406741456707675548547400, 5.09265598927836257715264861051, 6.38458859493957620044091823697, 7.07155081868826347285518930436, 7.70264140682374544988197389849, 8.809816852457762940966524483293, 9.207184294612230344918471480224