L(s) = 1 | + (0.222 − 0.974i)2-s + (0.974 − 1.22i)3-s + (−0.900 − 0.433i)4-s + (−0.974 − 1.22i)6-s + (−0.781 − 0.623i)7-s + (−0.623 + 0.781i)8-s + (−0.321 − 1.40i)9-s + (0.433 − 1.90i)11-s + (−1.40 + 0.678i)12-s + (−0.0990 + 0.433i)13-s + (−0.781 + 0.623i)14-s + (0.623 + 0.781i)16-s + (−0.900 + 0.433i)17-s − 1.44·18-s + (−1.52 + 0.347i)21-s + (−1.75 − 0.846i)22-s + ⋯ |
L(s) = 1 | + (0.222 − 0.974i)2-s + (0.974 − 1.22i)3-s + (−0.900 − 0.433i)4-s + (−0.974 − 1.22i)6-s + (−0.781 − 0.623i)7-s + (−0.623 + 0.781i)8-s + (−0.321 − 1.40i)9-s + (0.433 − 1.90i)11-s + (−1.40 + 0.678i)12-s + (−0.0990 + 0.433i)13-s + (−0.781 + 0.623i)14-s + (0.623 + 0.781i)16-s + (−0.900 + 0.433i)17-s − 1.44·18-s + (−1.52 + 0.347i)21-s + (−1.75 − 0.846i)22-s + ⋯ |
Λ(s)=(=(3332s/2ΓC(s)L(s)(−0.801−0.598i)Λ(1−s)
Λ(s)=(=(3332s/2ΓC(s)L(s)(−0.801−0.598i)Λ(1−s)
Degree: |
2 |
Conductor: |
3332
= 22⋅72⋅17
|
Sign: |
−0.801−0.598i
|
Analytic conductor: |
1.66288 |
Root analytic conductor: |
1.28952 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3332(407,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3332, ( :0), −0.801−0.598i)
|
Particular Values
L(21) |
≈ |
1.441968462 |
L(21) |
≈ |
1.441968462 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.222+0.974i)T |
| 7 | 1+(0.781+0.623i)T |
| 17 | 1+(0.900−0.433i)T |
good | 3 | 1+(−0.974+1.22i)T+(−0.222−0.974i)T2 |
| 5 | 1+(0.222+0.974i)T2 |
| 11 | 1+(−0.433+1.90i)T+(−0.900−0.433i)T2 |
| 13 | 1+(0.0990−0.433i)T+(−0.900−0.433i)T2 |
| 19 | 1−T2 |
| 23 | 1+(−1.75−0.846i)T+(0.623+0.781i)T2 |
| 29 | 1+(−0.623+0.781i)T2 |
| 31 | 1+1.56T+T2 |
| 37 | 1+(−0.623+0.781i)T2 |
| 41 | 1+(0.222+0.974i)T2 |
| 43 | 1+(0.222−0.974i)T2 |
| 47 | 1+(0.900+0.433i)T2 |
| 53 | 1+(1.12+0.541i)T+(0.623+0.781i)T2 |
| 59 | 1+(0.222−0.974i)T2 |
| 61 | 1+(−0.623+0.781i)T2 |
| 67 | 1−T2 |
| 71 | 1+(−1.40−0.678i)T+(0.623+0.781i)T2 |
| 73 | 1+(0.900−0.433i)T2 |
| 79 | 1−1.94T+T2 |
| 83 | 1+(0.900−0.433i)T2 |
| 89 | 1+(−0.277−1.21i)T+(−0.900+0.433i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.524691492170903427233193785782, −7.79085357911255892002101448776, −6.75910726388546770122495843532, −6.33568483139966082694483107763, −5.29932559112299617042797391408, −3.95971669711100366207224469614, −3.40085986949927219624964267328, −2.73343573491181054499224866888, −1.68636441992371162168697999859, −0.71123287276723704805990679413,
2.27245219337206432788446173304, 3.19682426352975954174877618798, 3.89270618416553483477381123303, 4.84200406741456707675548547400, 5.09265598927836257715264861051, 6.38458859493957620044091823697, 7.07155081868826347285518930436, 7.70264140682374544988197389849, 8.809816852457762940966524483293, 9.207184294612230344918471480224