L(s) = 1 | + (−0.0747 − 0.997i)2-s + (−0.563 − 0.173i)3-s + (−0.988 + 0.149i)4-s + (−0.131 + 0.574i)6-s + (−0.974 + 0.222i)7-s + (0.222 + 0.974i)8-s + (−0.539 − 0.367i)9-s + (−1.64 + 1.12i)11-s + (0.582 + 0.0878i)12-s + (0.134 + 0.0648i)13-s + (0.294 + 0.955i)14-s + (0.955 − 0.294i)16-s + (0.365 + 0.930i)17-s + (−0.326 + 0.565i)18-s + (0.587 + 0.0440i)21-s + (1.24 + 1.55i)22-s + ⋯ |
L(s) = 1 | + (−0.0747 − 0.997i)2-s + (−0.563 − 0.173i)3-s + (−0.988 + 0.149i)4-s + (−0.131 + 0.574i)6-s + (−0.974 + 0.222i)7-s + (0.222 + 0.974i)8-s + (−0.539 − 0.367i)9-s + (−1.64 + 1.12i)11-s + (0.582 + 0.0878i)12-s + (0.134 + 0.0648i)13-s + (0.294 + 0.955i)14-s + (0.955 − 0.294i)16-s + (0.365 + 0.930i)17-s + (−0.326 + 0.565i)18-s + (0.587 + 0.0440i)21-s + (1.24 + 1.55i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.138 + 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.138 + 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5392196690\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5392196690\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.0747 + 0.997i)T \) |
| 7 | \( 1 + (0.974 - 0.222i)T \) |
| 17 | \( 1 + (-0.365 - 0.930i)T \) |
good | 3 | \( 1 + (0.563 + 0.173i)T + (0.826 + 0.563i)T^{2} \) |
| 5 | \( 1 + (-0.0747 + 0.997i)T^{2} \) |
| 11 | \( 1 + (1.64 - 1.12i)T + (0.365 - 0.930i)T^{2} \) |
| 13 | \( 1 + (-0.134 - 0.0648i)T + (0.623 + 0.781i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.317 + 0.807i)T + (-0.733 - 0.680i)T^{2} \) |
| 29 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 31 | \( 1 + (-0.974 + 1.68i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.955 - 0.294i)T^{2} \) |
| 41 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 43 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 47 | \( 1 + (0.988 - 0.149i)T^{2} \) |
| 53 | \( 1 + (-1.44 + 0.218i)T + (0.955 - 0.294i)T^{2} \) |
| 59 | \( 1 + (-0.0747 - 0.997i)T^{2} \) |
| 61 | \( 1 + (-0.955 - 0.294i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.848 - 1.06i)T + (-0.222 + 0.974i)T^{2} \) |
| 73 | \( 1 + (0.988 + 0.149i)T^{2} \) |
| 79 | \( 1 + (-0.563 - 0.975i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 89 | \( 1 + (1.57 + 1.07i)T + (0.365 + 0.930i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.641941001501302636478171375639, −8.151132741567267968363277566491, −7.16405824892932222808765290665, −6.18213301465150355194830227206, −5.58995107746465577183091496733, −4.71989832276323585220278609034, −3.86522262079375059033449756887, −2.76887513380615203704074058382, −2.28313805806652858038545625900, −0.58968798134225306611113522994,
0.70386911688408942165290017403, 2.89386413335424161572129003133, 3.41708209637661974034230151033, 4.80307353294412538620372935860, 5.40971153276064929437946273220, 5.80495982333538941891176969637, 6.72486949005264623225861689785, 7.43496926638173268958782244029, 8.149463566257131674153020005692, 8.825499334095506957422143118242