L(s) = 1 | + (−0.623 + 0.781i)2-s + (0.781 + 0.376i)3-s + (−0.222 − 0.974i)4-s + (−0.781 + 0.376i)6-s + (0.433 − 0.900i)7-s + (0.900 + 0.433i)8-s + (−0.153 − 0.193i)9-s + (−0.974 + 1.22i)11-s + (0.193 − 0.846i)12-s + (−0.777 + 0.974i)13-s + (0.433 + 0.900i)14-s + (−0.900 + 0.433i)16-s + (−0.222 + 0.974i)17-s + 0.246·18-s + (0.678 − 0.541i)21-s + (−0.347 − 1.52i)22-s + ⋯ |
L(s) = 1 | + (−0.623 + 0.781i)2-s + (0.781 + 0.376i)3-s + (−0.222 − 0.974i)4-s + (−0.781 + 0.376i)6-s + (0.433 − 0.900i)7-s + (0.900 + 0.433i)8-s + (−0.153 − 0.193i)9-s + (−0.974 + 1.22i)11-s + (0.193 − 0.846i)12-s + (−0.777 + 0.974i)13-s + (0.433 + 0.900i)14-s + (−0.900 + 0.433i)16-s + (−0.222 + 0.974i)17-s + 0.246·18-s + (0.678 − 0.541i)21-s + (−0.347 − 1.52i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.518 - 0.855i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.518 - 0.855i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9665401345\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9665401345\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.623 - 0.781i)T \) |
| 7 | \( 1 + (-0.433 + 0.900i)T \) |
| 17 | \( 1 + (0.222 - 0.974i)T \) |
good | 3 | \( 1 + (-0.781 - 0.376i)T + (0.623 + 0.781i)T^{2} \) |
| 5 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 11 | \( 1 + (0.974 - 1.22i)T + (-0.222 - 0.974i)T^{2} \) |
| 13 | \( 1 + (0.777 - 0.974i)T + (-0.222 - 0.974i)T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (-0.347 - 1.52i)T + (-0.900 + 0.433i)T^{2} \) |
| 29 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 31 | \( 1 - 0.867T + T^{2} \) |
| 37 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 41 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 43 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 47 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 53 | \( 1 + (-0.400 - 1.75i)T + (-0.900 + 0.433i)T^{2} \) |
| 59 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 61 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (0.193 + 0.846i)T + (-0.900 + 0.433i)T^{2} \) |
| 73 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 79 | \( 1 - 1.56T + T^{2} \) |
| 83 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 89 | \( 1 + (-1.12 - 1.40i)T + (-0.222 + 0.974i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.132574766166031899573995292391, −8.206444283847028365008376390205, −7.58332863336376039012643333922, −7.15270071102489250466764473056, −6.27466572532939786555932827973, −5.14190742336784369539032992338, −4.57574656488125513710024485746, −3.75920997125011265416751390843, −2.43281982168762132099449891987, −1.47588353428623989378900455585,
0.64294837586593912064272987617, 2.34580724889632683212878475329, 2.61803483441737538556162051507, 3.25946094679219589207034179230, 4.78892689250448382170137530262, 5.26239672245037191529920263071, 6.48004497451292412416065189554, 7.53136961041212137488452486913, 8.117348955830325621109446240163, 8.534695502563351376263407314847