L(s) = 1 | + (−0.365 − 0.930i)2-s + (0.149 + 1.98i)3-s + (−0.733 + 0.680i)4-s + (1.79 − 0.865i)6-s + (0.433 − 0.900i)7-s + (0.900 + 0.433i)8-s + (−2.94 + 0.443i)9-s + (−1.84 − 0.277i)11-s + (−1.46 − 1.35i)12-s + (−0.455 + 0.571i)13-s + (−0.997 − 0.0747i)14-s + (0.0747 − 0.997i)16-s + (0.955 − 0.294i)17-s + (1.48 + 2.57i)18-s + (1.85 + 0.728i)21-s + (0.414 + 1.81i)22-s + ⋯ |
L(s) = 1 | + (−0.365 − 0.930i)2-s + (0.149 + 1.98i)3-s + (−0.733 + 0.680i)4-s + (1.79 − 0.865i)6-s + (0.433 − 0.900i)7-s + (0.900 + 0.433i)8-s + (−2.94 + 0.443i)9-s + (−1.84 − 0.277i)11-s + (−1.46 − 1.35i)12-s + (−0.455 + 0.571i)13-s + (−0.997 − 0.0747i)14-s + (0.0747 − 0.997i)16-s + (0.955 − 0.294i)17-s + (1.48 + 2.57i)18-s + (1.85 + 0.728i)21-s + (0.414 + 1.81i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.481 + 0.876i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.481 + 0.876i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2190346128\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2190346128\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.365 + 0.930i)T \) |
| 7 | \( 1 + (-0.433 + 0.900i)T \) |
| 17 | \( 1 + (-0.955 + 0.294i)T \) |
good | 3 | \( 1 + (-0.149 - 1.98i)T + (-0.988 + 0.149i)T^{2} \) |
| 5 | \( 1 + (-0.365 + 0.930i)T^{2} \) |
| 11 | \( 1 + (1.84 + 0.277i)T + (0.955 + 0.294i)T^{2} \) |
| 13 | \( 1 + (0.455 - 0.571i)T + (-0.222 - 0.974i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (1.49 + 0.460i)T + (0.826 + 0.563i)T^{2} \) |
| 29 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 31 | \( 1 + (0.433 + 0.751i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.0747 - 0.997i)T^{2} \) |
| 41 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 43 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 47 | \( 1 + (0.733 - 0.680i)T^{2} \) |
| 53 | \( 1 + (1.21 - 1.12i)T + (0.0747 - 0.997i)T^{2} \) |
| 59 | \( 1 + (-0.365 - 0.930i)T^{2} \) |
| 61 | \( 1 + (-0.0747 - 0.997i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.250 + 1.09i)T + (-0.900 + 0.433i)T^{2} \) |
| 73 | \( 1 + (0.733 + 0.680i)T^{2} \) |
| 79 | \( 1 + (0.149 - 0.258i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 89 | \( 1 + (-0.147 + 0.0222i)T + (0.955 - 0.294i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.737696112159284178961067279314, −8.018804131230336207423429723631, −7.66733825607774201023533411067, −5.90827932660140358816057488961, −5.03565516645173542840595947934, −4.55179141964648428656805607952, −3.87842343172600197058502253882, −3.02372757915339508562393974819, −2.29916040102111098280476192532, −0.13920567056649789409934277120,
1.45199320801222298966065369871, 2.27704549066748395700232857969, 3.22189835218900007454062344104, 5.20232380069062281169018480325, 5.43220508231617072652317056546, 6.11195043528421772132884880818, 7.04949847735058189527902927155, 7.76366416313443267407514650519, 7.957951818082438671493089520314, 8.536335988135077684070218577824