L(s) = 1 | + (−0.623 − 0.781i)2-s + (−0.781 + 0.376i)3-s + (−0.222 + 0.974i)4-s + (0.781 + 0.376i)6-s + (−0.433 − 0.900i)7-s + (0.900 − 0.433i)8-s + (−0.153 + 0.193i)9-s + (0.974 + 1.22i)11-s + (−0.193 − 0.846i)12-s + (−0.777 − 0.974i)13-s + (−0.433 + 0.900i)14-s + (−0.900 − 0.433i)16-s + (−0.222 − 0.974i)17-s + 0.246·18-s + (0.678 + 0.541i)21-s + (0.347 − 1.52i)22-s + ⋯ |
L(s) = 1 | + (−0.623 − 0.781i)2-s + (−0.781 + 0.376i)3-s + (−0.222 + 0.974i)4-s + (0.781 + 0.376i)6-s + (−0.433 − 0.900i)7-s + (0.900 − 0.433i)8-s + (−0.153 + 0.193i)9-s + (0.974 + 1.22i)11-s + (−0.193 − 0.846i)12-s + (−0.777 − 0.974i)13-s + (−0.433 + 0.900i)14-s + (−0.900 − 0.433i)16-s + (−0.222 − 0.974i)17-s + 0.246·18-s + (0.678 + 0.541i)21-s + (0.347 − 1.52i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.518 + 0.855i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.518 + 0.855i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4001969771\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4001969771\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.623 + 0.781i)T \) |
| 7 | \( 1 + (0.433 + 0.900i)T \) |
| 17 | \( 1 + (0.222 + 0.974i)T \) |
good | 3 | \( 1 + (0.781 - 0.376i)T + (0.623 - 0.781i)T^{2} \) |
| 5 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 11 | \( 1 + (-0.974 - 1.22i)T + (-0.222 + 0.974i)T^{2} \) |
| 13 | \( 1 + (0.777 + 0.974i)T + (-0.222 + 0.974i)T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (0.347 - 1.52i)T + (-0.900 - 0.433i)T^{2} \) |
| 29 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 31 | \( 1 + 0.867T + T^{2} \) |
| 37 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 41 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 43 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 47 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 53 | \( 1 + (-0.400 + 1.75i)T + (-0.900 - 0.433i)T^{2} \) |
| 59 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 61 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (-0.193 + 0.846i)T + (-0.900 - 0.433i)T^{2} \) |
| 73 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 79 | \( 1 + 1.56T + T^{2} \) |
| 83 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 89 | \( 1 + (-1.12 + 1.40i)T + (-0.222 - 0.974i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.786711247073673865564945325519, −7.65094403800409897653895253369, −7.30597840452589895840250397362, −6.48816631054201285406124021005, −5.25949576921756542557536980546, −4.62254955182552635227362329423, −3.84018992718558400269622021308, −2.89634351980615226743397336076, −1.76809461783829333689950856074, −0.37513215123562130472116971132,
1.12726891505975528184913036096, 2.33110968577581435849534891327, 3.68507468604853375877187659551, 4.76854410054671592985907128619, 5.69510665302685502061598089240, 6.20983984980875859929616186666, 6.60932575932823473945285800672, 7.38446880667211691727043155304, 8.641897795333199944262059943857, 8.809420259145874082203289453380