L(s) = 1 | + (−0.900 + 0.433i)2-s + (−0.0990 + 0.433i)3-s + (0.623 − 0.781i)4-s + (−0.0990 − 0.433i)6-s + (0.222 − 0.974i)7-s + (−0.222 + 0.974i)8-s + (0.722 + 0.347i)9-s + (−1.62 + 0.781i)11-s + (0.277 + 0.347i)12-s + (1.62 − 0.781i)13-s + (0.222 + 0.974i)14-s + (−0.222 − 0.974i)16-s + (0.623 + 0.781i)17-s − 0.801·18-s + (0.400 + 0.193i)21-s + (1.12 − 1.40i)22-s + ⋯ |
L(s) = 1 | + (−0.900 + 0.433i)2-s + (−0.0990 + 0.433i)3-s + (0.623 − 0.781i)4-s + (−0.0990 − 0.433i)6-s + (0.222 − 0.974i)7-s + (−0.222 + 0.974i)8-s + (0.722 + 0.347i)9-s + (−1.62 + 0.781i)11-s + (0.277 + 0.347i)12-s + (1.62 − 0.781i)13-s + (0.222 + 0.974i)14-s + (−0.222 − 0.974i)16-s + (0.623 + 0.781i)17-s − 0.801·18-s + (0.400 + 0.193i)21-s + (1.12 − 1.40i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.926 - 0.375i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.926 - 0.375i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8832451308\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8832451308\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.900 - 0.433i)T \) |
| 7 | \( 1 + (-0.222 + 0.974i)T \) |
| 17 | \( 1 + (-0.623 - 0.781i)T \) |
good | 3 | \( 1 + (0.0990 - 0.433i)T + (-0.900 - 0.433i)T^{2} \) |
| 5 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 11 | \( 1 + (1.62 - 0.781i)T + (0.623 - 0.781i)T^{2} \) |
| 13 | \( 1 + (-1.62 + 0.781i)T + (0.623 - 0.781i)T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (-1.12 + 1.40i)T + (-0.222 - 0.974i)T^{2} \) |
| 29 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 31 | \( 1 - 0.445T + T^{2} \) |
| 37 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 41 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 43 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 47 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 53 | \( 1 + (0.277 - 0.347i)T + (-0.222 - 0.974i)T^{2} \) |
| 59 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 61 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (-0.277 + 0.347i)T + (-0.222 - 0.974i)T^{2} \) |
| 73 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 79 | \( 1 - 1.80T + T^{2} \) |
| 83 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 89 | \( 1 + (-0.400 - 0.193i)T + (0.623 + 0.781i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.657564751605842012991432171992, −7.991147807054068463765529260028, −7.64598103679234155626521375761, −6.76973175979126232891423717370, −5.94375046224691988838376135524, −5.08604037242872452851460728849, −4.40656388852732673871962817782, −3.29066087686150034731770777356, −2.05500255540446985087323566083, −0.936295276039083458896097147773,
1.06748305101418593736976033204, 1.98518704187982317773688742129, 3.03205587319924430838075138902, 3.70971037076037997130686393964, 5.11479966696119749304116492927, 5.89527135838287467227718524356, 6.63050906769722321567733556698, 7.60080360299507606931143394431, 7.981246875049074950077669674280, 8.852515983537283689492893576032