L(s) = 1 | + (−0.955 + 0.294i)2-s + (0.680 + 1.73i)3-s + (0.826 − 0.563i)4-s + (−1.16 − 1.45i)6-s + (0.781 + 0.623i)7-s + (−0.623 + 0.781i)8-s + (−1.80 + 1.67i)9-s + (0.432 + 0.400i)11-s + (1.53 + 1.04i)12-s + (0.425 − 1.86i)13-s + (−0.930 − 0.365i)14-s + (0.365 − 0.930i)16-s + (0.0747 − 0.997i)17-s + (1.23 − 2.13i)18-s + (−0.548 + 1.77i)21-s + (−0.531 − 0.255i)22-s + ⋯ |
L(s) = 1 | + (−0.955 + 0.294i)2-s + (0.680 + 1.73i)3-s + (0.826 − 0.563i)4-s + (−1.16 − 1.45i)6-s + (0.781 + 0.623i)7-s + (−0.623 + 0.781i)8-s + (−1.80 + 1.67i)9-s + (0.432 + 0.400i)11-s + (1.53 + 1.04i)12-s + (0.425 − 1.86i)13-s + (−0.930 − 0.365i)14-s + (0.365 − 0.930i)16-s + (0.0747 − 0.997i)17-s + (1.23 − 2.13i)18-s + (−0.548 + 1.77i)21-s + (−0.531 − 0.255i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.801 - 0.598i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.801 - 0.598i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.129785126\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.129785126\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.955 - 0.294i)T \) |
| 7 | \( 1 + (-0.781 - 0.623i)T \) |
| 17 | \( 1 + (-0.0747 + 0.997i)T \) |
good | 3 | \( 1 + (-0.680 - 1.73i)T + (-0.733 + 0.680i)T^{2} \) |
| 5 | \( 1 + (-0.955 - 0.294i)T^{2} \) |
| 11 | \( 1 + (-0.432 - 0.400i)T + (0.0747 + 0.997i)T^{2} \) |
| 13 | \( 1 + (-0.425 + 1.86i)T + (-0.900 - 0.433i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.145 - 1.94i)T + (-0.988 + 0.149i)T^{2} \) |
| 29 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 31 | \( 1 + (0.781 - 1.35i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.365 - 0.930i)T^{2} \) |
| 41 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 43 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 47 | \( 1 + (-0.826 + 0.563i)T^{2} \) |
| 53 | \( 1 + (1.63 - 1.11i)T + (0.365 - 0.930i)T^{2} \) |
| 59 | \( 1 + (-0.955 + 0.294i)T^{2} \) |
| 61 | \( 1 + (-0.365 - 0.930i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.268 + 0.129i)T + (0.623 + 0.781i)T^{2} \) |
| 73 | \( 1 + (-0.826 - 0.563i)T^{2} \) |
| 79 | \( 1 + (0.680 + 1.17i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 89 | \( 1 + (-0.535 + 0.496i)T + (0.0747 - 0.997i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.198437556957560837366248632461, −8.555717974395225026696154433869, −7.889983556033266645579080378745, −7.27626404442496916857092439188, −5.78906826701536992621465256367, −5.31203645735981652546298969982, −4.71505613279458848519433722477, −3.26835949037716734306000067800, −2.95912570345462702814190616330, −1.57287402742528229654710940885,
0.901598226761024685228963230808, 1.76019175476058300336264675460, 2.30045149430903191123798031708, 3.50837463558891699031874525459, 4.35804365274743997184255202044, 6.15533549906213736285507990164, 6.56956408363180701341923435470, 7.13104975852026777013565685220, 7.896939969046150724403692092551, 8.596760137954628440600572882078