L(s) = 1 | + (−0.222 − 0.974i)2-s + (−0.777 − 0.974i)3-s + (−0.900 + 0.433i)4-s + (−0.777 + 0.974i)6-s + (−0.623 − 0.781i)7-s + (0.623 + 0.781i)8-s + (−0.123 + 0.541i)9-s + (−0.0990 − 0.433i)11-s + (1.12 + 0.541i)12-s + (0.0990 + 0.433i)13-s + (−0.623 + 0.781i)14-s + (0.623 − 0.781i)16-s + (−0.900 − 0.433i)17-s + 0.554·18-s + (−0.277 + 1.21i)21-s + (−0.400 + 0.193i)22-s + ⋯ |
L(s) = 1 | + (−0.222 − 0.974i)2-s + (−0.777 − 0.974i)3-s + (−0.900 + 0.433i)4-s + (−0.777 + 0.974i)6-s + (−0.623 − 0.781i)7-s + (0.623 + 0.781i)8-s + (−0.123 + 0.541i)9-s + (−0.0990 − 0.433i)11-s + (1.12 + 0.541i)12-s + (0.0990 + 0.433i)13-s + (−0.623 + 0.781i)14-s + (0.623 − 0.781i)16-s + (−0.900 − 0.433i)17-s + 0.554·18-s + (−0.277 + 1.21i)21-s + (−0.400 + 0.193i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.801 - 0.598i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.801 - 0.598i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.02027737937\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.02027737937\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.222 + 0.974i)T \) |
| 7 | \( 1 + (0.623 + 0.781i)T \) |
| 17 | \( 1 + (0.900 + 0.433i)T \) |
good | 3 | \( 1 + (0.777 + 0.974i)T + (-0.222 + 0.974i)T^{2} \) |
| 5 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 11 | \( 1 + (0.0990 + 0.433i)T + (-0.900 + 0.433i)T^{2} \) |
| 13 | \( 1 + (-0.0990 - 0.433i)T + (-0.900 + 0.433i)T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (0.400 - 0.193i)T + (0.623 - 0.781i)T^{2} \) |
| 29 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 31 | \( 1 + 1.24T + T^{2} \) |
| 37 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 41 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 43 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 47 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 53 | \( 1 + (1.12 - 0.541i)T + (0.623 - 0.781i)T^{2} \) |
| 59 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 61 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (-1.12 + 0.541i)T + (0.623 - 0.781i)T^{2} \) |
| 73 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 79 | \( 1 - 0.445T + T^{2} \) |
| 83 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 89 | \( 1 + (0.277 - 1.21i)T + (-0.900 - 0.433i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.201987860855850727088234395129, −8.066920187603464492786905126398, −7.36374700017835706605293277814, −6.74944744496767880065042927278, −5.92610897833473664406805713919, −5.04741072961767756225213803752, −4.01935910638189237534916565990, −3.31969567680309449118775789301, −2.11087475669093453480585777922, −1.17423292886629159964779486587,
0.01584294294396166476534273163, 2.10306961756013804235488997560, 3.55658383884694884193878397880, 4.37836332818426275165427131530, 5.05168114126877053188628448943, 5.79683370572585280460026038578, 6.27322886620008986522134259138, 7.09385886436738788531538900209, 8.089258567430141139942448924998, 8.716928596785286277723764021564