L(s) = 1 | + (−0.733 − 0.680i)2-s + (1.95 + 0.294i)3-s + (0.0747 + 0.997i)4-s + (−1.23 − 1.54i)6-s + (0.623 − 0.781i)7-s + (0.623 − 0.781i)8-s + (2.78 + 0.858i)9-s + (−1.40 + 0.432i)11-s + (−0.147 + 1.97i)12-s + (0.326 − 1.42i)13-s + (−0.988 + 0.149i)14-s + (−0.988 + 0.149i)16-s + (0.826 + 0.563i)17-s + (−1.45 − 2.52i)18-s + (1.44 − 1.34i)21-s + (1.32 + 0.636i)22-s + ⋯ |
L(s) = 1 | + (−0.733 − 0.680i)2-s + (1.95 + 0.294i)3-s + (0.0747 + 0.997i)4-s + (−1.23 − 1.54i)6-s + (0.623 − 0.781i)7-s + (0.623 − 0.781i)8-s + (2.78 + 0.858i)9-s + (−1.40 + 0.432i)11-s + (−0.147 + 1.97i)12-s + (0.326 − 1.42i)13-s + (−0.988 + 0.149i)14-s + (−0.988 + 0.149i)16-s + (0.826 + 0.563i)17-s + (−1.45 − 2.52i)18-s + (1.44 − 1.34i)21-s + (1.32 + 0.636i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.801 + 0.598i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.801 + 0.598i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.858968294\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.858968294\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.733 + 0.680i)T \) |
| 7 | \( 1 + (-0.623 + 0.781i)T \) |
| 17 | \( 1 + (-0.826 - 0.563i)T \) |
good | 3 | \( 1 + (-1.95 - 0.294i)T + (0.955 + 0.294i)T^{2} \) |
| 5 | \( 1 + (0.733 - 0.680i)T^{2} \) |
| 11 | \( 1 + (1.40 - 0.432i)T + (0.826 - 0.563i)T^{2} \) |
| 13 | \( 1 + (-0.326 + 1.42i)T + (-0.900 - 0.433i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.367 - 0.250i)T + (0.365 - 0.930i)T^{2} \) |
| 29 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 31 | \( 1 + (0.623 + 1.07i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.988 + 0.149i)T^{2} \) |
| 41 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 43 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 47 | \( 1 + (-0.0747 - 0.997i)T^{2} \) |
| 53 | \( 1 + (-0.0546 - 0.728i)T + (-0.988 + 0.149i)T^{2} \) |
| 59 | \( 1 + (0.733 + 0.680i)T^{2} \) |
| 61 | \( 1 + (0.988 + 0.149i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.658 + 0.317i)T + (0.623 + 0.781i)T^{2} \) |
| 73 | \( 1 + (-0.0747 + 0.997i)T^{2} \) |
| 79 | \( 1 + (0.955 - 1.65i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 89 | \( 1 + (1.88 + 0.582i)T + (0.826 + 0.563i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.536747489391904120441557406183, −8.105517268152289020637854959102, −7.58955916229801554869883680725, −7.32497587525810460632487716128, −5.51001513911989508036411613555, −4.41558787284496910939108645033, −3.70606342822045487934250675000, −3.05841681744816473345643522186, −2.23748452126035914842930989058, −1.35612012906003454602534806278,
1.54172678863558045964134210776, 2.22545697546608737360943963645, 3.02421612615896916189864337216, 4.23962366134357909752512867211, 5.10399599114579954828302882590, 6.10067651157915969865619708403, 7.08035465911243357182362982162, 7.60851346583044570362264333151, 8.352184802807978173043066117418, 8.568906142170053324462363705657