L(s) = 1 | + (0.988 + 0.149i)2-s + (0.930 − 0.634i)3-s + (0.955 + 0.294i)4-s + (1.01 − 0.488i)6-s + (−0.433 + 0.900i)7-s + (0.900 + 0.433i)8-s + (0.0983 − 0.250i)9-s + (0.108 + 0.277i)11-s + (1.07 − 0.332i)12-s + (1.23 − 1.54i)13-s + (−0.563 + 0.826i)14-s + (0.826 + 0.563i)16-s + (−0.733 − 0.680i)17-s + (0.134 − 0.233i)18-s + (0.167 + 1.11i)21-s + (0.0663 + 0.290i)22-s + ⋯ |
L(s) = 1 | + (0.988 + 0.149i)2-s + (0.930 − 0.634i)3-s + (0.955 + 0.294i)4-s + (1.01 − 0.488i)6-s + (−0.433 + 0.900i)7-s + (0.900 + 0.433i)8-s + (0.0983 − 0.250i)9-s + (0.108 + 0.277i)11-s + (1.07 − 0.332i)12-s + (1.23 − 1.54i)13-s + (−0.563 + 0.826i)14-s + (0.826 + 0.563i)16-s + (−0.733 − 0.680i)17-s + (0.134 − 0.233i)18-s + (0.167 + 1.11i)21-s + (0.0663 + 0.290i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0213i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0213i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(3.172945597\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.172945597\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.988 - 0.149i)T \) |
| 7 | \( 1 + (0.433 - 0.900i)T \) |
| 17 | \( 1 + (0.733 + 0.680i)T \) |
good | 3 | \( 1 + (-0.930 + 0.634i)T + (0.365 - 0.930i)T^{2} \) |
| 5 | \( 1 + (0.988 - 0.149i)T^{2} \) |
| 11 | \( 1 + (-0.108 - 0.277i)T + (-0.733 + 0.680i)T^{2} \) |
| 13 | \( 1 + (-1.23 + 1.54i)T + (-0.222 - 0.974i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (1.14 - 1.06i)T + (0.0747 - 0.997i)T^{2} \) |
| 29 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 31 | \( 1 + (-0.433 + 0.751i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.826 + 0.563i)T^{2} \) |
| 41 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 43 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 47 | \( 1 + (-0.955 - 0.294i)T^{2} \) |
| 53 | \( 1 + (-0.142 - 0.0440i)T + (0.826 + 0.563i)T^{2} \) |
| 59 | \( 1 + (0.988 + 0.149i)T^{2} \) |
| 61 | \( 1 + (-0.826 + 0.563i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.443 + 1.94i)T + (-0.900 + 0.433i)T^{2} \) |
| 73 | \( 1 + (-0.955 + 0.294i)T^{2} \) |
| 79 | \( 1 + (0.930 + 1.61i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 89 | \( 1 + (0.603 - 1.53i)T + (-0.733 - 0.680i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.544093523673375429437388833369, −7.909879368965959248475930155761, −7.45782328997739615602591859800, −6.36958232782710139504348168194, −5.85911089089225862502525367822, −5.14076079650558823086126198496, −3.91197369453991451536463021001, −3.20725692565892619034164020378, −2.49820810780931327865075149239, −1.68348336970180104727869907784,
1.54004002385790361494389007272, 2.56171675389418960951696395805, 3.58041343158299684792528390613, 4.13532793319556336034403937233, 4.37872097165212621588311257686, 5.92092837026162417709018000788, 6.44637097173549866712401321398, 7.06821966396443575303997739997, 8.258702539342601167823860307736, 8.680205750723798275374108431520