Properties

Label 2-3332-17.16-c1-0-23
Degree $2$
Conductor $3332$
Sign $-0.727 - 0.685i$
Analytic cond. $26.6061$
Root an. cond. $5.15811$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.41i·3-s + 2.82i·5-s + 0.999·9-s + 1.41i·11-s + 4·13-s − 4.00·15-s + (−3 − 2.82i)17-s + 4·19-s + 1.41i·23-s − 3.00·25-s + 5.65i·27-s − 2.82i·29-s + 4.24i·31-s − 2.00·33-s + 8.48i·37-s + ⋯
L(s)  = 1  + 0.816i·3-s + 1.26i·5-s + 0.333·9-s + 0.426i·11-s + 1.10·13-s − 1.03·15-s + (−0.727 − 0.685i)17-s + 0.917·19-s + 0.294i·23-s − 0.600·25-s + 1.08i·27-s − 0.525i·29-s + 0.762i·31-s − 0.348·33-s + 1.39i·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.727 - 0.685i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.727 - 0.685i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3332\)    =    \(2^{2} \cdot 7^{2} \cdot 17\)
Sign: $-0.727 - 0.685i$
Analytic conductor: \(26.6061\)
Root analytic conductor: \(5.15811\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3332} (2549, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3332,\ (\ :1/2),\ -0.727 - 0.685i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.018405627\)
\(L(\frac12)\) \(\approx\) \(2.018405627\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
17 \( 1 + (3 + 2.82i)T \)
good3 \( 1 - 1.41iT - 3T^{2} \)
5 \( 1 - 2.82iT - 5T^{2} \)
11 \( 1 - 1.41iT - 11T^{2} \)
13 \( 1 - 4T + 13T^{2} \)
19 \( 1 - 4T + 19T^{2} \)
23 \( 1 - 1.41iT - 23T^{2} \)
29 \( 1 + 2.82iT - 29T^{2} \)
31 \( 1 - 4.24iT - 31T^{2} \)
37 \( 1 - 8.48iT - 37T^{2} \)
41 \( 1 - 11.3iT - 41T^{2} \)
43 \( 1 - 8T + 43T^{2} \)
47 \( 1 - 12T + 47T^{2} \)
53 \( 1 + 6T + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 + 8.48iT - 61T^{2} \)
67 \( 1 + 4T + 67T^{2} \)
71 \( 1 + 7.07iT - 71T^{2} \)
73 \( 1 - 73T^{2} \)
79 \( 1 + 4.24iT - 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 + 12T + 89T^{2} \)
97 \( 1 - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.171924702527574337555717665426, −8.117150631464355883057345796486, −7.30460009731033303507926265645, −6.71585799606762800398881691780, −5.99073947578360479849892432441, −4.94533604186819072799102090721, −4.23651806592263843561796399330, −3.35557915310758406773997657842, −2.73350639811331207734201520511, −1.37450596698300350519268658808, 0.69197666760147965336248626507, 1.39188626362306616951778318912, 2.40401879973578705823224118485, 3.84723019786387171980301979499, 4.33556329033103752053931528617, 5.55971352873620900131879208340, 5.92416336827612259671591408493, 6.98330175918415174496554911145, 7.58244010693781146472357456071, 8.478853418615852924070730515768

Graph of the $Z$-function along the critical line