Properties

Label 2-3332-1.1-c1-0-53
Degree $2$
Conductor $3332$
Sign $-1$
Analytic cond. $26.6061$
Root an. cond. $5.15811$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.43·3-s + 0.700·5-s + 2.92·9-s − 6.25·11-s − 3.33·13-s + 1.70·15-s + 17-s − 2.78·19-s − 5.97·23-s − 4.50·25-s − 0.194·27-s − 3.96·29-s − 1.55·31-s − 15.2·33-s − 2.53·37-s − 8.12·39-s − 5.62·41-s − 2.29·43-s + 2.04·45-s + 11.9·47-s + 2.43·51-s + 6.55·53-s − 4.37·55-s − 6.77·57-s + 8.78·59-s − 4.95·61-s − 2.33·65-s + ⋯
L(s)  = 1  + 1.40·3-s + 0.313·5-s + 0.973·9-s − 1.88·11-s − 0.925·13-s + 0.440·15-s + 0.242·17-s − 0.638·19-s − 1.24·23-s − 0.901·25-s − 0.0373·27-s − 0.736·29-s − 0.279·31-s − 2.64·33-s − 0.416·37-s − 1.30·39-s − 0.877·41-s − 0.349·43-s + 0.304·45-s + 1.74·47-s + 0.340·51-s + 0.900·53-s − 0.590·55-s − 0.897·57-s + 1.14·59-s − 0.634·61-s − 0.290·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3332\)    =    \(2^{2} \cdot 7^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(26.6061\)
Root analytic conductor: \(5.15811\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3332,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
17 \( 1 - T \)
good3 \( 1 - 2.43T + 3T^{2} \)
5 \( 1 - 0.700T + 5T^{2} \)
11 \( 1 + 6.25T + 11T^{2} \)
13 \( 1 + 3.33T + 13T^{2} \)
19 \( 1 + 2.78T + 19T^{2} \)
23 \( 1 + 5.97T + 23T^{2} \)
29 \( 1 + 3.96T + 29T^{2} \)
31 \( 1 + 1.55T + 31T^{2} \)
37 \( 1 + 2.53T + 37T^{2} \)
41 \( 1 + 5.62T + 41T^{2} \)
43 \( 1 + 2.29T + 43T^{2} \)
47 \( 1 - 11.9T + 47T^{2} \)
53 \( 1 - 6.55T + 53T^{2} \)
59 \( 1 - 8.78T + 59T^{2} \)
61 \( 1 + 4.95T + 61T^{2} \)
67 \( 1 - 13.1T + 67T^{2} \)
71 \( 1 + 14.2T + 71T^{2} \)
73 \( 1 - 8.40T + 73T^{2} \)
79 \( 1 - 3.03T + 79T^{2} \)
83 \( 1 - 4.93T + 83T^{2} \)
89 \( 1 + 14.7T + 89T^{2} \)
97 \( 1 + 0.898T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.224940103010341527205720737931, −7.67795787552456808348746575425, −7.12851256586622381230476649976, −5.83441652195539856130453164505, −5.25034617179900186399779572900, −4.18902966155811937794617474693, −3.35567479841298669818474194209, −2.32706642984166627661722289948, −2.11556989101790293111621871748, 0, 2.11556989101790293111621871748, 2.32706642984166627661722289948, 3.35567479841298669818474194209, 4.18902966155811937794617474693, 5.25034617179900186399779572900, 5.83441652195539856130453164505, 7.12851256586622381230476649976, 7.67795787552456808348746575425, 8.224940103010341527205720737931

Graph of the $Z$-function along the critical line