L(s) = 1 | + 1.61·3-s − 0.618·5-s − 0.381·9-s − 0.763·11-s − 1.23·13-s − 1.00·15-s − 17-s + 8.47·19-s − 7.70·23-s − 4.61·25-s − 5.47·27-s − 5.70·29-s − 6.32·31-s − 1.23·33-s + 0.472·37-s − 2.00·39-s + 0.0901·41-s − 12.0·43-s + 0.236·45-s + 8.47·47-s − 1.61·51-s + 10.7·53-s + 0.472·55-s + 13.7·57-s + 7.32·61-s + 0.763·65-s − 13.0·67-s + ⋯ |
L(s) = 1 | + 0.934·3-s − 0.276·5-s − 0.127·9-s − 0.230·11-s − 0.342·13-s − 0.258·15-s − 0.242·17-s + 1.94·19-s − 1.60·23-s − 0.923·25-s − 1.05·27-s − 1.05·29-s − 1.13·31-s − 0.215·33-s + 0.0776·37-s − 0.320·39-s + 0.0140·41-s − 1.84·43-s + 0.0351·45-s + 1.23·47-s − 0.226·51-s + 1.48·53-s + 0.0636·55-s + 1.81·57-s + 0.938·61-s + 0.0947·65-s − 1.59·67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 17 | \( 1 + T \) |
good | 3 | \( 1 - 1.61T + 3T^{2} \) |
| 5 | \( 1 + 0.618T + 5T^{2} \) |
| 11 | \( 1 + 0.763T + 11T^{2} \) |
| 13 | \( 1 + 1.23T + 13T^{2} \) |
| 19 | \( 1 - 8.47T + 19T^{2} \) |
| 23 | \( 1 + 7.70T + 23T^{2} \) |
| 29 | \( 1 + 5.70T + 29T^{2} \) |
| 31 | \( 1 + 6.32T + 31T^{2} \) |
| 37 | \( 1 - 0.472T + 37T^{2} \) |
| 41 | \( 1 - 0.0901T + 41T^{2} \) |
| 43 | \( 1 + 12.0T + 43T^{2} \) |
| 47 | \( 1 - 8.47T + 47T^{2} \) |
| 53 | \( 1 - 10.7T + 53T^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 - 7.32T + 61T^{2} \) |
| 67 | \( 1 + 13.0T + 67T^{2} \) |
| 71 | \( 1 - 10.9T + 71T^{2} \) |
| 73 | \( 1 + 7.14T + 73T^{2} \) |
| 79 | \( 1 - 2.94T + 79T^{2} \) |
| 83 | \( 1 + 15.4T + 83T^{2} \) |
| 89 | \( 1 + 2T + 89T^{2} \) |
| 97 | \( 1 + 15.0T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.200815921439230341000192803341, −7.60489439089374269628216770320, −7.10258384005820657997189200229, −5.77802355164132056466793269052, −5.36861685929996625705144193005, −4.05786882343667755727723394743, −3.52129479636843063116126499966, −2.59311966921292282545756144899, −1.71948920196424384451510979032, 0,
1.71948920196424384451510979032, 2.59311966921292282545756144899, 3.52129479636843063116126499966, 4.05786882343667755727723394743, 5.36861685929996625705144193005, 5.77802355164132056466793269052, 7.10258384005820657997189200229, 7.60489439089374269628216770320, 8.200815921439230341000192803341