Properties

Label 2-3332-1.1-c1-0-46
Degree $2$
Conductor $3332$
Sign $-1$
Analytic cond. $26.6061$
Root an. cond. $5.15811$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.703·3-s + 0.200·5-s − 2.50·9-s + 0.369·11-s + 3.09·13-s + 0.141·15-s + 17-s − 3.18·19-s − 3.84·23-s − 4.95·25-s − 3.87·27-s − 2.87·29-s − 6.70·31-s + 0.259·33-s − 4.84·37-s + 2.17·39-s − 10.7·41-s + 12.5·43-s − 0.502·45-s + 0.142·47-s + 0.703·51-s + 7.07·53-s + 0.0740·55-s − 2.23·57-s + 6.71·59-s + 5.43·61-s + 0.620·65-s + ⋯
L(s)  = 1  + 0.406·3-s + 0.0896·5-s − 0.835·9-s + 0.111·11-s + 0.858·13-s + 0.0364·15-s + 0.242·17-s − 0.730·19-s − 0.802·23-s − 0.991·25-s − 0.745·27-s − 0.533·29-s − 1.20·31-s + 0.0452·33-s − 0.796·37-s + 0.348·39-s − 1.68·41-s + 1.91·43-s − 0.0748·45-s + 0.0207·47-s + 0.0985·51-s + 0.971·53-s + 0.00998·55-s − 0.296·57-s + 0.874·59-s + 0.695·61-s + 0.0769·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3332\)    =    \(2^{2} \cdot 7^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(26.6061\)
Root analytic conductor: \(5.15811\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3332,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
17 \( 1 - T \)
good3 \( 1 - 0.703T + 3T^{2} \)
5 \( 1 - 0.200T + 5T^{2} \)
11 \( 1 - 0.369T + 11T^{2} \)
13 \( 1 - 3.09T + 13T^{2} \)
19 \( 1 + 3.18T + 19T^{2} \)
23 \( 1 + 3.84T + 23T^{2} \)
29 \( 1 + 2.87T + 29T^{2} \)
31 \( 1 + 6.70T + 31T^{2} \)
37 \( 1 + 4.84T + 37T^{2} \)
41 \( 1 + 10.7T + 41T^{2} \)
43 \( 1 - 12.5T + 43T^{2} \)
47 \( 1 - 0.142T + 47T^{2} \)
53 \( 1 - 7.07T + 53T^{2} \)
59 \( 1 - 6.71T + 59T^{2} \)
61 \( 1 - 5.43T + 61T^{2} \)
67 \( 1 - 1.03T + 67T^{2} \)
71 \( 1 + 2.83T + 71T^{2} \)
73 \( 1 + 9.84T + 73T^{2} \)
79 \( 1 + 12.3T + 79T^{2} \)
83 \( 1 - 5.51T + 83T^{2} \)
89 \( 1 + 2.57T + 89T^{2} \)
97 \( 1 + 14.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.415640807008444315615189427011, −7.61964448340073666370240643351, −6.78133774881024864656706346755, −5.81600406465049471495736988717, −5.48889417328982580066317672904, −4.08285059039135790600061905093, −3.61342624504299879899807120874, −2.51315785959925142912410617785, −1.63902782253135044482948812059, 0, 1.63902782253135044482948812059, 2.51315785959925142912410617785, 3.61342624504299879899807120874, 4.08285059039135790600061905093, 5.48889417328982580066317672904, 5.81600406465049471495736988717, 6.78133774881024864656706346755, 7.61964448340073666370240643351, 8.415640807008444315615189427011

Graph of the $Z$-function along the critical line