Properties

Label 2-3332-1.1-c1-0-43
Degree $2$
Conductor $3332$
Sign $-1$
Analytic cond. $26.6061$
Root an. cond. $5.15811$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.33·3-s − 2.63·5-s − 1.22·9-s + 3.39·11-s − 2.73·13-s − 3.51·15-s + 17-s + 0.404·19-s + 1.46·23-s + 1.94·25-s − 5.62·27-s + 5.14·29-s + 5.78·31-s + 4.52·33-s + 3.35·37-s − 3.64·39-s − 8.88·41-s − 7.39·43-s + 3.22·45-s − 10.8·47-s + 1.33·51-s − 5.85·53-s − 8.95·55-s + 0.538·57-s + 2.15·59-s − 1.64·61-s + 7.20·65-s + ⋯
L(s)  = 1  + 0.769·3-s − 1.17·5-s − 0.407·9-s + 1.02·11-s − 0.758·13-s − 0.906·15-s + 0.242·17-s + 0.0927·19-s + 0.306·23-s + 0.388·25-s − 1.08·27-s + 0.955·29-s + 1.03·31-s + 0.788·33-s + 0.551·37-s − 0.583·39-s − 1.38·41-s − 1.12·43-s + 0.480·45-s − 1.58·47-s + 0.186·51-s − 0.804·53-s − 1.20·55-s + 0.0713·57-s + 0.280·59-s − 0.211·61-s + 0.894·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3332\)    =    \(2^{2} \cdot 7^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(26.6061\)
Root analytic conductor: \(5.15811\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3332,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
17 \( 1 - T \)
good3 \( 1 - 1.33T + 3T^{2} \)
5 \( 1 + 2.63T + 5T^{2} \)
11 \( 1 - 3.39T + 11T^{2} \)
13 \( 1 + 2.73T + 13T^{2} \)
19 \( 1 - 0.404T + 19T^{2} \)
23 \( 1 - 1.46T + 23T^{2} \)
29 \( 1 - 5.14T + 29T^{2} \)
31 \( 1 - 5.78T + 31T^{2} \)
37 \( 1 - 3.35T + 37T^{2} \)
41 \( 1 + 8.88T + 41T^{2} \)
43 \( 1 + 7.39T + 43T^{2} \)
47 \( 1 + 10.8T + 47T^{2} \)
53 \( 1 + 5.85T + 53T^{2} \)
59 \( 1 - 2.15T + 59T^{2} \)
61 \( 1 + 1.64T + 61T^{2} \)
67 \( 1 + 12.4T + 67T^{2} \)
71 \( 1 + 5.10T + 71T^{2} \)
73 \( 1 + 11.7T + 73T^{2} \)
79 \( 1 - 1.64T + 79T^{2} \)
83 \( 1 + 11.4T + 83T^{2} \)
89 \( 1 + 5.01T + 89T^{2} \)
97 \( 1 - 1.08T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.315186707111921321605841483358, −7.66696051666749108891975936505, −6.91702022948147324302252073559, −6.15302422322882318960843683452, −4.94806417614825631637709724853, −4.28323023889174802219176794391, −3.36260717688569910296952425222, −2.85390847279950945675780157098, −1.50420172457986746489449359819, 0, 1.50420172457986746489449359819, 2.85390847279950945675780157098, 3.36260717688569910296952425222, 4.28323023889174802219176794391, 4.94806417614825631637709724853, 6.15302422322882318960843683452, 6.91702022948147324302252073559, 7.66696051666749108891975936505, 8.315186707111921321605841483358

Graph of the $Z$-function along the critical line