Properties

Label 2-3332-1.1-c1-0-39
Degree $2$
Conductor $3332$
Sign $1$
Analytic cond. $26.6061$
Root an. cond. $5.15811$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.61·3-s + 3.61·5-s + 3.85·9-s + 1.23·13-s + 9.47·15-s + 17-s + 6.47·19-s + 0.763·23-s + 8.09·25-s + 2.23·27-s + 7.23·29-s − 10.5·31-s − 9.70·37-s + 3.23·39-s − 7.85·41-s − 1.85·43-s + 13.9·45-s − 6.94·47-s + 2.61·51-s − 3.32·53-s + 16.9·57-s + 0.763·59-s − 7.56·61-s + 4.47·65-s + 6.09·67-s + 2·69-s − 9.23·71-s + ⋯
L(s)  = 1  + 1.51·3-s + 1.61·5-s + 1.28·9-s + 0.342·13-s + 2.44·15-s + 0.242·17-s + 1.48·19-s + 0.159·23-s + 1.61·25-s + 0.430·27-s + 1.34·29-s − 1.89·31-s − 1.59·37-s + 0.518·39-s − 1.22·41-s − 0.282·43-s + 2.07·45-s − 1.01·47-s + 0.366·51-s − 0.456·53-s + 2.24·57-s + 0.0994·59-s − 0.968·61-s + 0.554·65-s + 0.744·67-s + 0.240·69-s − 1.09·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3332\)    =    \(2^{2} \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(26.6061\)
Root analytic conductor: \(5.15811\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3332,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.658453326\)
\(L(\frac12)\) \(\approx\) \(4.658453326\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
17 \( 1 - T \)
good3 \( 1 - 2.61T + 3T^{2} \)
5 \( 1 - 3.61T + 5T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 - 1.23T + 13T^{2} \)
19 \( 1 - 6.47T + 19T^{2} \)
23 \( 1 - 0.763T + 23T^{2} \)
29 \( 1 - 7.23T + 29T^{2} \)
31 \( 1 + 10.5T + 31T^{2} \)
37 \( 1 + 9.70T + 37T^{2} \)
41 \( 1 + 7.85T + 41T^{2} \)
43 \( 1 + 1.85T + 43T^{2} \)
47 \( 1 + 6.94T + 47T^{2} \)
53 \( 1 + 3.32T + 53T^{2} \)
59 \( 1 - 0.763T + 59T^{2} \)
61 \( 1 + 7.56T + 61T^{2} \)
67 \( 1 - 6.09T + 67T^{2} \)
71 \( 1 + 9.23T + 71T^{2} \)
73 \( 1 - 3.85T + 73T^{2} \)
79 \( 1 - 11.7T + 79T^{2} \)
83 \( 1 + 10.4T + 83T^{2} \)
89 \( 1 - 8.76T + 89T^{2} \)
97 \( 1 + 2.85T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.879013673811184043608678615488, −8.016424666891161792444779543259, −7.21255838740300075668991186632, −6.47961626777573312058944839933, −5.52164488398356962041781308158, −4.91911535703869940747229027303, −3.50082886072682046288404034446, −3.07165925805224840936043531837, −2.02095606936778740314664235010, −1.43154103520227827629246674825, 1.43154103520227827629246674825, 2.02095606936778740314664235010, 3.07165925805224840936043531837, 3.50082886072682046288404034446, 4.91911535703869940747229027303, 5.52164488398356962041781308158, 6.47961626777573312058944839933, 7.21255838740300075668991186632, 8.016424666891161792444779543259, 8.879013673811184043608678615488

Graph of the $Z$-function along the critical line