Properties

Label 2-3332-1.1-c1-0-37
Degree $2$
Conductor $3332$
Sign $1$
Analytic cond. $26.6061$
Root an. cond. $5.15811$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.29·3-s − 0.255·5-s + 7.83·9-s + 5.29·11-s + 5.00·13-s − 0.841·15-s − 17-s + 4.78·19-s − 2.20·23-s − 4.93·25-s + 15.9·27-s − 9.21·29-s − 10.4·31-s + 17.4·33-s + 2.45·37-s + 16.4·39-s − 3.70·41-s + 9.09·43-s − 2.00·45-s − 3.08·47-s − 3.29·51-s − 3.01·53-s − 1.35·55-s + 15.7·57-s − 8.02·59-s − 1.32·61-s − 1.27·65-s + ⋯
L(s)  = 1  + 1.90·3-s − 0.114·5-s + 2.61·9-s + 1.59·11-s + 1.38·13-s − 0.217·15-s − 0.242·17-s + 1.09·19-s − 0.459·23-s − 0.986·25-s + 3.06·27-s − 1.71·29-s − 1.87·31-s + 3.03·33-s + 0.403·37-s + 2.63·39-s − 0.578·41-s + 1.38·43-s − 0.298·45-s − 0.450·47-s − 0.460·51-s − 0.413·53-s − 0.182·55-s + 2.08·57-s − 1.04·59-s − 0.169·61-s − 0.158·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3332\)    =    \(2^{2} \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(26.6061\)
Root analytic conductor: \(5.15811\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3332,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.485737660\)
\(L(\frac12)\) \(\approx\) \(4.485737660\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
17 \( 1 + T \)
good3 \( 1 - 3.29T + 3T^{2} \)
5 \( 1 + 0.255T + 5T^{2} \)
11 \( 1 - 5.29T + 11T^{2} \)
13 \( 1 - 5.00T + 13T^{2} \)
19 \( 1 - 4.78T + 19T^{2} \)
23 \( 1 + 2.20T + 23T^{2} \)
29 \( 1 + 9.21T + 29T^{2} \)
31 \( 1 + 10.4T + 31T^{2} \)
37 \( 1 - 2.45T + 37T^{2} \)
41 \( 1 + 3.70T + 41T^{2} \)
43 \( 1 - 9.09T + 43T^{2} \)
47 \( 1 + 3.08T + 47T^{2} \)
53 \( 1 + 3.01T + 53T^{2} \)
59 \( 1 + 8.02T + 59T^{2} \)
61 \( 1 + 1.32T + 61T^{2} \)
67 \( 1 + 2.39T + 67T^{2} \)
71 \( 1 + 4.46T + 71T^{2} \)
73 \( 1 + 10.1T + 73T^{2} \)
79 \( 1 - 3.14T + 79T^{2} \)
83 \( 1 - 7.79T + 83T^{2} \)
89 \( 1 - 12.3T + 89T^{2} \)
97 \( 1 - 11.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.855030857430132089092454736847, −7.81677435096291897239955346134, −7.49991785942011047067275519888, −6.56451082728508960424300905688, −5.70935633126933544826944550827, −4.27072067636669136190551254019, −3.71879737786751345914468132891, −3.31074229452828336802700565226, −1.95318806206666422542220214243, −1.38817457350297941992360574867, 1.38817457350297941992360574867, 1.95318806206666422542220214243, 3.31074229452828336802700565226, 3.71879737786751345914468132891, 4.27072067636669136190551254019, 5.70935633126933544826944550827, 6.56451082728508960424300905688, 7.49991785942011047067275519888, 7.81677435096291897239955346134, 8.855030857430132089092454736847

Graph of the $Z$-function along the critical line