Properties

Label 2-3332-1.1-c1-0-36
Degree $2$
Conductor $3332$
Sign $1$
Analytic cond. $26.6061$
Root an. cond. $5.15811$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.08·3-s + 3.25·5-s + 6.53·9-s − 5.12·11-s + 5.13·13-s + 10.0·15-s − 17-s − 5.25·19-s + 6.97·23-s + 5.59·25-s + 10.9·27-s − 3.39·29-s + 2.35·31-s − 15.8·33-s + 2.60·37-s + 15.8·39-s − 5.70·41-s + 1.18·43-s + 21.2·45-s + 4.70·47-s − 3.08·51-s + 10.0·53-s − 16.6·55-s − 16.2·57-s − 13.0·59-s + 1.78·61-s + 16.7·65-s + ⋯
L(s)  = 1  + 1.78·3-s + 1.45·5-s + 2.17·9-s − 1.54·11-s + 1.42·13-s + 2.59·15-s − 0.242·17-s − 1.20·19-s + 1.45·23-s + 1.11·25-s + 2.10·27-s − 0.630·29-s + 0.423·31-s − 2.75·33-s + 0.428·37-s + 2.53·39-s − 0.891·41-s + 0.180·43-s + 3.17·45-s + 0.685·47-s − 0.432·51-s + 1.37·53-s − 2.24·55-s − 2.14·57-s − 1.70·59-s + 0.228·61-s + 2.07·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3332\)    =    \(2^{2} \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(26.6061\)
Root analytic conductor: \(5.15811\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3332,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.772073274\)
\(L(\frac12)\) \(\approx\) \(4.772073274\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
17 \( 1 + T \)
good3 \( 1 - 3.08T + 3T^{2} \)
5 \( 1 - 3.25T + 5T^{2} \)
11 \( 1 + 5.12T + 11T^{2} \)
13 \( 1 - 5.13T + 13T^{2} \)
19 \( 1 + 5.25T + 19T^{2} \)
23 \( 1 - 6.97T + 23T^{2} \)
29 \( 1 + 3.39T + 29T^{2} \)
31 \( 1 - 2.35T + 31T^{2} \)
37 \( 1 - 2.60T + 37T^{2} \)
41 \( 1 + 5.70T + 41T^{2} \)
43 \( 1 - 1.18T + 43T^{2} \)
47 \( 1 - 4.70T + 47T^{2} \)
53 \( 1 - 10.0T + 53T^{2} \)
59 \( 1 + 13.0T + 59T^{2} \)
61 \( 1 - 1.78T + 61T^{2} \)
67 \( 1 + 11.1T + 67T^{2} \)
71 \( 1 - 9.21T + 71T^{2} \)
73 \( 1 - 14.6T + 73T^{2} \)
79 \( 1 - 2.05T + 79T^{2} \)
83 \( 1 + 15.7T + 83T^{2} \)
89 \( 1 + 6.91T + 89T^{2} \)
97 \( 1 - 10.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.684150560448497575617921535116, −8.145645810533883411236497306271, −7.27681623740452755856804976266, −6.45007690567173264611580967833, −5.62982434307992907307550230988, −4.71717866697391026894789536632, −3.69452538797608346830589027071, −2.77501668657397723823843904395, −2.27741904580852919683964362800, −1.37580546528844004142723143907, 1.37580546528844004142723143907, 2.27741904580852919683964362800, 2.77501668657397723823843904395, 3.69452538797608346830589027071, 4.71717866697391026894789536632, 5.62982434307992907307550230988, 6.45007690567173264611580967833, 7.27681623740452755856804976266, 8.145645810533883411236497306271, 8.684150560448497575617921535116

Graph of the $Z$-function along the critical line