Properties

Label 2-3332-1.1-c1-0-31
Degree $2$
Conductor $3332$
Sign $1$
Analytic cond. $26.6061$
Root an. cond. $5.15811$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.30·3-s + 1.30·5-s + 2.30·9-s + 4·11-s + 4.60·13-s + 3·15-s + 17-s − 8.60·19-s + 4·23-s − 3.30·25-s − 1.60·27-s + 9.21·29-s − 7.30·31-s + 9.21·33-s + 9.81·37-s + 10.6·39-s + 11.5·41-s − 4.30·43-s + 3.00·45-s + 2.60·47-s + 2.30·51-s + 0.697·53-s + 5.21·55-s − 19.8·57-s + 8·59-s − 15.5·61-s + 6·65-s + ⋯
L(s)  = 1  + 1.32·3-s + 0.582·5-s + 0.767·9-s + 1.20·11-s + 1.27·13-s + 0.774·15-s + 0.242·17-s − 1.97·19-s + 0.834·23-s − 0.660·25-s − 0.308·27-s + 1.71·29-s − 1.31·31-s + 1.60·33-s + 1.61·37-s + 1.69·39-s + 1.79·41-s − 0.656·43-s + 0.447·45-s + 0.380·47-s + 0.322·51-s + 0.0957·53-s + 0.702·55-s − 2.62·57-s + 1.04·59-s − 1.98·61-s + 0.744·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3332\)    =    \(2^{2} \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(26.6061\)
Root analytic conductor: \(5.15811\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3332,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.823631092\)
\(L(\frac12)\) \(\approx\) \(3.823631092\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
17 \( 1 - T \)
good3 \( 1 - 2.30T + 3T^{2} \)
5 \( 1 - 1.30T + 5T^{2} \)
11 \( 1 - 4T + 11T^{2} \)
13 \( 1 - 4.60T + 13T^{2} \)
19 \( 1 + 8.60T + 19T^{2} \)
23 \( 1 - 4T + 23T^{2} \)
29 \( 1 - 9.21T + 29T^{2} \)
31 \( 1 + 7.30T + 31T^{2} \)
37 \( 1 - 9.81T + 37T^{2} \)
41 \( 1 - 11.5T + 41T^{2} \)
43 \( 1 + 4.30T + 43T^{2} \)
47 \( 1 - 2.60T + 47T^{2} \)
53 \( 1 - 0.697T + 53T^{2} \)
59 \( 1 - 8T + 59T^{2} \)
61 \( 1 + 15.5T + 61T^{2} \)
67 \( 1 - 2.69T + 67T^{2} \)
71 \( 1 + 3.39T + 71T^{2} \)
73 \( 1 + 7.51T + 73T^{2} \)
79 \( 1 + 2.60T + 79T^{2} \)
83 \( 1 + 3.21T + 83T^{2} \)
89 \( 1 + 7.81T + 89T^{2} \)
97 \( 1 - 13.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.718648842119222093580900860835, −8.147484629416981854397868463540, −7.21640803018341674063951741026, −6.28534450421200033161846546478, −5.91757040486787312808952087741, −4.41241946058535657515881015690, −3.91523616946610771549225298010, −2.97928863720325613192907106650, −2.11828384774845839492676935403, −1.21959480004910906126175542136, 1.21959480004910906126175542136, 2.11828384774845839492676935403, 2.97928863720325613192907106650, 3.91523616946610771549225298010, 4.41241946058535657515881015690, 5.91757040486787312808952087741, 6.28534450421200033161846546478, 7.21640803018341674063951741026, 8.147484629416981854397868463540, 8.718648842119222093580900860835

Graph of the $Z$-function along the critical line