Properties

Label 2-3332-1.1-c1-0-28
Degree $2$
Conductor $3332$
Sign $1$
Analytic cond. $26.6061$
Root an. cond. $5.15811$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.27·3-s + 4.13·5-s − 1.36·9-s + 1.53·11-s + 0.0160·13-s + 5.29·15-s − 17-s + 0.519·19-s + 0.958·23-s + 12.1·25-s − 5.58·27-s + 5.79·29-s + 1.29·31-s + 1.96·33-s + 2.76·37-s + 0.0205·39-s − 0.769·41-s − 4.93·43-s − 5.64·45-s − 1.60·47-s − 1.27·51-s + 5.00·53-s + 6.36·55-s + 0.665·57-s + 5.50·59-s + 14.5·61-s + 0.0664·65-s + ⋯
L(s)  = 1  + 0.738·3-s + 1.85·5-s − 0.454·9-s + 0.463·11-s + 0.00445·13-s + 1.36·15-s − 0.242·17-s + 0.119·19-s + 0.199·23-s + 2.42·25-s − 1.07·27-s + 1.07·29-s + 0.232·31-s + 0.342·33-s + 0.455·37-s + 0.00329·39-s − 0.120·41-s − 0.752·43-s − 0.840·45-s − 0.234·47-s − 0.179·51-s + 0.687·53-s + 0.857·55-s + 0.0880·57-s + 0.716·59-s + 1.86·61-s + 0.00824·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3332\)    =    \(2^{2} \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(26.6061\)
Root analytic conductor: \(5.15811\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3332,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.539555007\)
\(L(\frac12)\) \(\approx\) \(3.539555007\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
17 \( 1 + T \)
good3 \( 1 - 1.27T + 3T^{2} \)
5 \( 1 - 4.13T + 5T^{2} \)
11 \( 1 - 1.53T + 11T^{2} \)
13 \( 1 - 0.0160T + 13T^{2} \)
19 \( 1 - 0.519T + 19T^{2} \)
23 \( 1 - 0.958T + 23T^{2} \)
29 \( 1 - 5.79T + 29T^{2} \)
31 \( 1 - 1.29T + 31T^{2} \)
37 \( 1 - 2.76T + 37T^{2} \)
41 \( 1 + 0.769T + 41T^{2} \)
43 \( 1 + 4.93T + 43T^{2} \)
47 \( 1 + 1.60T + 47T^{2} \)
53 \( 1 - 5.00T + 53T^{2} \)
59 \( 1 - 5.50T + 59T^{2} \)
61 \( 1 - 14.5T + 61T^{2} \)
67 \( 1 - 5.13T + 67T^{2} \)
71 \( 1 - 13.4T + 71T^{2} \)
73 \( 1 + 3.16T + 73T^{2} \)
79 \( 1 + 10.3T + 79T^{2} \)
83 \( 1 - 16.1T + 83T^{2} \)
89 \( 1 + 10.5T + 89T^{2} \)
97 \( 1 - 10.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.659477724848826089415854707325, −8.193631503982321038110989994388, −6.91897584985450433192522103168, −6.42912693009325012409174231199, −5.59991865772049512847707621172, −4.99476484466996759052207179900, −3.78898819833989986959674772892, −2.73951632506840970770739499870, −2.22998758619064200829577280762, −1.17040288994534890482874969269, 1.17040288994534890482874969269, 2.22998758619064200829577280762, 2.73951632506840970770739499870, 3.78898819833989986959674772892, 4.99476484466996759052207179900, 5.59991865772049512847707621172, 6.42912693009325012409174231199, 6.91897584985450433192522103168, 8.193631503982321038110989994388, 8.659477724848826089415854707325

Graph of the $Z$-function along the critical line