Properties

Label 2-3332-1.1-c1-0-26
Degree $2$
Conductor $3332$
Sign $1$
Analytic cond. $26.6061$
Root an. cond. $5.15811$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.302·3-s + 3.30·5-s − 2.90·9-s + 4.60·11-s + 6.60·13-s − 1.00·15-s + 17-s + 6·19-s − 2.60·23-s + 5.90·25-s + 1.78·27-s − 8.60·29-s + 6.69·31-s − 1.39·33-s + 7.21·37-s − 2.00·39-s − 9.51·41-s − 4.30·43-s − 9.60·45-s − 10·47-s − 0.302·51-s + 0.697·53-s + 15.2·55-s − 1.81·57-s − 5.21·59-s + 4.30·61-s + 21.8·65-s + ⋯
L(s)  = 1  − 0.174·3-s + 1.47·5-s − 0.969·9-s + 1.38·11-s + 1.83·13-s − 0.258·15-s + 0.242·17-s + 1.37·19-s − 0.543·23-s + 1.18·25-s + 0.344·27-s − 1.59·29-s + 1.20·31-s − 0.242·33-s + 1.18·37-s − 0.320·39-s − 1.48·41-s − 0.656·43-s − 1.43·45-s − 1.45·47-s − 0.0423·51-s + 0.0957·53-s + 2.05·55-s − 0.240·57-s − 0.678·59-s + 0.550·61-s + 2.70·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3332\)    =    \(2^{2} \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(26.6061\)
Root analytic conductor: \(5.15811\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3332,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.745331713\)
\(L(\frac12)\) \(\approx\) \(2.745331713\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
17 \( 1 - T \)
good3 \( 1 + 0.302T + 3T^{2} \)
5 \( 1 - 3.30T + 5T^{2} \)
11 \( 1 - 4.60T + 11T^{2} \)
13 \( 1 - 6.60T + 13T^{2} \)
19 \( 1 - 6T + 19T^{2} \)
23 \( 1 + 2.60T + 23T^{2} \)
29 \( 1 + 8.60T + 29T^{2} \)
31 \( 1 - 6.69T + 31T^{2} \)
37 \( 1 - 7.21T + 37T^{2} \)
41 \( 1 + 9.51T + 41T^{2} \)
43 \( 1 + 4.30T + 43T^{2} \)
47 \( 1 + 10T + 47T^{2} \)
53 \( 1 - 0.697T + 53T^{2} \)
59 \( 1 + 5.21T + 59T^{2} \)
61 \( 1 - 4.30T + 61T^{2} \)
67 \( 1 - 2.69T + 67T^{2} \)
71 \( 1 + 2T + 71T^{2} \)
73 \( 1 - 13.5T + 73T^{2} \)
79 \( 1 + 6T + 79T^{2} \)
83 \( 1 + 9.21T + 83T^{2} \)
89 \( 1 - 2T + 89T^{2} \)
97 \( 1 - 2.09T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.682387309683576626356959481357, −8.108448796978046193475231524049, −6.83359675553433149076650620813, −6.16257719436519209809635571122, −5.84620362911401061994813275465, −5.04154532832702039834195383205, −3.77203565043264282322181540255, −3.10613542763688161550250061349, −1.82186369562600974388642463745, −1.11457962680886830333445368701, 1.11457962680886830333445368701, 1.82186369562600974388642463745, 3.10613542763688161550250061349, 3.77203565043264282322181540255, 5.04154532832702039834195383205, 5.84620362911401061994813275465, 6.16257719436519209809635571122, 6.83359675553433149076650620813, 8.108448796978046193475231524049, 8.682387309683576626356959481357

Graph of the $Z$-function along the critical line