Properties

Label 2-3332-1.1-c1-0-24
Degree $2$
Conductor $3332$
Sign $-1$
Analytic cond. $26.6061$
Root an. cond. $5.15811$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.27·3-s − 4.13·5-s − 1.36·9-s + 1.53·11-s − 0.0160·13-s + 5.29·15-s + 17-s − 0.519·19-s + 0.958·23-s + 12.1·25-s + 5.58·27-s + 5.79·29-s − 1.29·31-s − 1.96·33-s + 2.76·37-s + 0.0205·39-s + 0.769·41-s − 4.93·43-s + 5.64·45-s + 1.60·47-s − 1.27·51-s + 5.00·53-s − 6.36·55-s + 0.665·57-s − 5.50·59-s − 14.5·61-s + 0.0664·65-s + ⋯
L(s)  = 1  − 0.738·3-s − 1.85·5-s − 0.454·9-s + 0.463·11-s − 0.00445·13-s + 1.36·15-s + 0.242·17-s − 0.119·19-s + 0.199·23-s + 2.42·25-s + 1.07·27-s + 1.07·29-s − 0.232·31-s − 0.342·33-s + 0.455·37-s + 0.00329·39-s + 0.120·41-s − 0.752·43-s + 0.840·45-s + 0.234·47-s − 0.179·51-s + 0.687·53-s − 0.857·55-s + 0.0880·57-s − 0.716·59-s − 1.86·61-s + 0.00824·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3332\)    =    \(2^{2} \cdot 7^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(26.6061\)
Root analytic conductor: \(5.15811\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3332,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
17 \( 1 - T \)
good3 \( 1 + 1.27T + 3T^{2} \)
5 \( 1 + 4.13T + 5T^{2} \)
11 \( 1 - 1.53T + 11T^{2} \)
13 \( 1 + 0.0160T + 13T^{2} \)
19 \( 1 + 0.519T + 19T^{2} \)
23 \( 1 - 0.958T + 23T^{2} \)
29 \( 1 - 5.79T + 29T^{2} \)
31 \( 1 + 1.29T + 31T^{2} \)
37 \( 1 - 2.76T + 37T^{2} \)
41 \( 1 - 0.769T + 41T^{2} \)
43 \( 1 + 4.93T + 43T^{2} \)
47 \( 1 - 1.60T + 47T^{2} \)
53 \( 1 - 5.00T + 53T^{2} \)
59 \( 1 + 5.50T + 59T^{2} \)
61 \( 1 + 14.5T + 61T^{2} \)
67 \( 1 - 5.13T + 67T^{2} \)
71 \( 1 - 13.4T + 71T^{2} \)
73 \( 1 - 3.16T + 73T^{2} \)
79 \( 1 + 10.3T + 79T^{2} \)
83 \( 1 + 16.1T + 83T^{2} \)
89 \( 1 - 10.5T + 89T^{2} \)
97 \( 1 + 10.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.288072043001196428474963353396, −7.49074734396485456035295792611, −6.80865304923059073917665939857, −6.06908013921726301613980781724, −5.04959581006146589360524453774, −4.42035770965685311813675533283, −3.59794408723174020293812047078, −2.80501208379741746371872214758, −1.03781454255525334606856520053, 0, 1.03781454255525334606856520053, 2.80501208379741746371872214758, 3.59794408723174020293812047078, 4.42035770965685311813675533283, 5.04959581006146589360524453774, 6.06908013921726301613980781724, 6.80865304923059073917665939857, 7.49074734396485456035295792611, 8.288072043001196428474963353396

Graph of the $Z$-function along the critical line