Properties

Label 2-3332-1.1-c1-0-20
Degree $2$
Conductor $3332$
Sign $1$
Analytic cond. $26.6061$
Root an. cond. $5.15811$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.79·3-s − 2.79·5-s + 0.208·9-s + 5.58·11-s + 4·13-s − 5·15-s + 17-s + 2·19-s − 7.58·23-s + 2.79·25-s − 5.00·27-s + 4.79·31-s + 10·33-s − 3.58·37-s + 7.16·39-s + 5.79·41-s + 1.79·43-s − 0.582·45-s + 7.58·47-s + 1.79·51-s − 5.20·53-s − 15.5·55-s + 3.58·57-s + 2.41·59-s + 2.20·61-s − 11.1·65-s + 11.9·67-s + ⋯
L(s)  = 1  + 1.03·3-s − 1.24·5-s + 0.0695·9-s + 1.68·11-s + 1.10·13-s − 1.29·15-s + 0.242·17-s + 0.458·19-s − 1.58·23-s + 0.558·25-s − 0.962·27-s + 0.860·31-s + 1.74·33-s − 0.588·37-s + 1.14·39-s + 0.904·41-s + 0.273·43-s − 0.0868·45-s + 1.10·47-s + 0.250·51-s − 0.715·53-s − 2.10·55-s + 0.474·57-s + 0.314·59-s + 0.282·61-s − 1.38·65-s + 1.46·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3332\)    =    \(2^{2} \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(26.6061\)
Root analytic conductor: \(5.15811\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3332,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.370324483\)
\(L(\frac12)\) \(\approx\) \(2.370324483\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
17 \( 1 - T \)
good3 \( 1 - 1.79T + 3T^{2} \)
5 \( 1 + 2.79T + 5T^{2} \)
11 \( 1 - 5.58T + 11T^{2} \)
13 \( 1 - 4T + 13T^{2} \)
19 \( 1 - 2T + 19T^{2} \)
23 \( 1 + 7.58T + 23T^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 - 4.79T + 31T^{2} \)
37 \( 1 + 3.58T + 37T^{2} \)
41 \( 1 - 5.79T + 41T^{2} \)
43 \( 1 - 1.79T + 43T^{2} \)
47 \( 1 - 7.58T + 47T^{2} \)
53 \( 1 + 5.20T + 53T^{2} \)
59 \( 1 - 2.41T + 59T^{2} \)
61 \( 1 - 2.20T + 61T^{2} \)
67 \( 1 - 11.9T + 67T^{2} \)
71 \( 1 - 13.5T + 71T^{2} \)
73 \( 1 - 10.2T + 73T^{2} \)
79 \( 1 + 10T + 79T^{2} \)
83 \( 1 + 0.417T + 83T^{2} \)
89 \( 1 - 7.16T + 89T^{2} \)
97 \( 1 - 5.20T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.392727398063302631771492985602, −8.157185473535855845248277709978, −7.33373535512831631070207449318, −6.48498370050946151082146349990, −5.73186334231391871219904263621, −4.32185421330321881091255475444, −3.79037105057957972672210184380, −3.36242987153296577280979426608, −2.10687829164353309312528916744, −0.903972632988435692391668117711, 0.903972632988435692391668117711, 2.10687829164353309312528916744, 3.36242987153296577280979426608, 3.79037105057957972672210184380, 4.32185421330321881091255475444, 5.73186334231391871219904263621, 6.48498370050946151082146349990, 7.33373535512831631070207449318, 8.157185473535855845248277709978, 8.392727398063302631771492985602

Graph of the $Z$-function along the critical line