Properties

Label 2-3332-1.1-c1-0-2
Degree $2$
Conductor $3332$
Sign $1$
Analytic cond. $26.6061$
Root an. cond. $5.15811$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.43·3-s − 0.700·5-s + 2.92·9-s − 6.25·11-s + 3.33·13-s + 1.70·15-s − 17-s + 2.78·19-s − 5.97·23-s − 4.50·25-s + 0.194·27-s − 3.96·29-s + 1.55·31-s + 15.2·33-s − 2.53·37-s − 8.12·39-s + 5.62·41-s − 2.29·43-s − 2.04·45-s − 11.9·47-s + 2.43·51-s + 6.55·53-s + 4.37·55-s − 6.77·57-s − 8.78·59-s + 4.95·61-s − 2.33·65-s + ⋯
L(s)  = 1  − 1.40·3-s − 0.313·5-s + 0.973·9-s − 1.88·11-s + 0.925·13-s + 0.440·15-s − 0.242·17-s + 0.638·19-s − 1.24·23-s − 0.901·25-s + 0.0373·27-s − 0.736·29-s + 0.279·31-s + 2.64·33-s − 0.416·37-s − 1.30·39-s + 0.877·41-s − 0.349·43-s − 0.304·45-s − 1.74·47-s + 0.340·51-s + 0.900·53-s + 0.590·55-s − 0.897·57-s − 1.14·59-s + 0.634·61-s − 0.290·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3332\)    =    \(2^{2} \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(26.6061\)
Root analytic conductor: \(5.15811\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3332,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4917780858\)
\(L(\frac12)\) \(\approx\) \(0.4917780858\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
17 \( 1 + T \)
good3 \( 1 + 2.43T + 3T^{2} \)
5 \( 1 + 0.700T + 5T^{2} \)
11 \( 1 + 6.25T + 11T^{2} \)
13 \( 1 - 3.33T + 13T^{2} \)
19 \( 1 - 2.78T + 19T^{2} \)
23 \( 1 + 5.97T + 23T^{2} \)
29 \( 1 + 3.96T + 29T^{2} \)
31 \( 1 - 1.55T + 31T^{2} \)
37 \( 1 + 2.53T + 37T^{2} \)
41 \( 1 - 5.62T + 41T^{2} \)
43 \( 1 + 2.29T + 43T^{2} \)
47 \( 1 + 11.9T + 47T^{2} \)
53 \( 1 - 6.55T + 53T^{2} \)
59 \( 1 + 8.78T + 59T^{2} \)
61 \( 1 - 4.95T + 61T^{2} \)
67 \( 1 - 13.1T + 67T^{2} \)
71 \( 1 + 14.2T + 71T^{2} \)
73 \( 1 + 8.40T + 73T^{2} \)
79 \( 1 - 3.03T + 79T^{2} \)
83 \( 1 + 4.93T + 83T^{2} \)
89 \( 1 - 14.7T + 89T^{2} \)
97 \( 1 - 0.898T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.379476062494237666420072985023, −7.87040066890400722857062112066, −7.09964646898825519975260089062, −6.10921585531970728125078072490, −5.66815811017413852373645383493, −5.00227307683143456615607132168, −4.13525792869028015852812726466, −3.10503167744979575370749266539, −1.86967287483556514081064458890, −0.43475734108515463502525547193, 0.43475734108515463502525547193, 1.86967287483556514081064458890, 3.10503167744979575370749266539, 4.13525792869028015852812726466, 5.00227307683143456615607132168, 5.66815811017413852373645383493, 6.10921585531970728125078072490, 7.09964646898825519975260089062, 7.87040066890400722857062112066, 8.379476062494237666420072985023

Graph of the $Z$-function along the critical line