Properties

Label 2-3332-1.1-c1-0-18
Degree $2$
Conductor $3332$
Sign $1$
Analytic cond. $26.6061$
Root an. cond. $5.15811$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.33·3-s + 2.63·5-s − 1.22·9-s + 3.39·11-s + 2.73·13-s − 3.51·15-s − 17-s − 0.404·19-s + 1.46·23-s + 1.94·25-s + 5.62·27-s + 5.14·29-s − 5.78·31-s − 4.52·33-s + 3.35·37-s − 3.64·39-s + 8.88·41-s − 7.39·43-s − 3.22·45-s + 10.8·47-s + 1.33·51-s − 5.85·53-s + 8.95·55-s + 0.538·57-s − 2.15·59-s + 1.64·61-s + 7.20·65-s + ⋯
L(s)  = 1  − 0.769·3-s + 1.17·5-s − 0.407·9-s + 1.02·11-s + 0.758·13-s − 0.906·15-s − 0.242·17-s − 0.0927·19-s + 0.306·23-s + 0.388·25-s + 1.08·27-s + 0.955·29-s − 1.03·31-s − 0.788·33-s + 0.551·37-s − 0.583·39-s + 1.38·41-s − 1.12·43-s − 0.480·45-s + 1.58·47-s + 0.186·51-s − 0.804·53-s + 1.20·55-s + 0.0713·57-s − 0.280·59-s + 0.211·61-s + 0.894·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3332\)    =    \(2^{2} \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(26.6061\)
Root analytic conductor: \(5.15811\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3332,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.877441092\)
\(L(\frac12)\) \(\approx\) \(1.877441092\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
17 \( 1 + T \)
good3 \( 1 + 1.33T + 3T^{2} \)
5 \( 1 - 2.63T + 5T^{2} \)
11 \( 1 - 3.39T + 11T^{2} \)
13 \( 1 - 2.73T + 13T^{2} \)
19 \( 1 + 0.404T + 19T^{2} \)
23 \( 1 - 1.46T + 23T^{2} \)
29 \( 1 - 5.14T + 29T^{2} \)
31 \( 1 + 5.78T + 31T^{2} \)
37 \( 1 - 3.35T + 37T^{2} \)
41 \( 1 - 8.88T + 41T^{2} \)
43 \( 1 + 7.39T + 43T^{2} \)
47 \( 1 - 10.8T + 47T^{2} \)
53 \( 1 + 5.85T + 53T^{2} \)
59 \( 1 + 2.15T + 59T^{2} \)
61 \( 1 - 1.64T + 61T^{2} \)
67 \( 1 + 12.4T + 67T^{2} \)
71 \( 1 + 5.10T + 71T^{2} \)
73 \( 1 - 11.7T + 73T^{2} \)
79 \( 1 - 1.64T + 79T^{2} \)
83 \( 1 - 11.4T + 83T^{2} \)
89 \( 1 - 5.01T + 89T^{2} \)
97 \( 1 + 1.08T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.988038778088120228695426020352, −7.892165173707304293127830946335, −6.80104675350490893402772286688, −6.21820582768612079921801213872, −5.80897560335628165379811136194, −4.98123645088500077148172891073, −4.05140204787000637561262632148, −2.96466516312116932419056124281, −1.88753429925440673377817815430, −0.885259736099810619523120277286, 0.885259736099810619523120277286, 1.88753429925440673377817815430, 2.96466516312116932419056124281, 4.05140204787000637561262632148, 4.98123645088500077148172891073, 5.80897560335628165379811136194, 6.21820582768612079921801213872, 6.80104675350490893402772286688, 7.892165173707304293127830946335, 8.988038778088120228695426020352

Graph of the $Z$-function along the critical line