L(s) = 1 | + 3-s − 2·9-s − 5·11-s + 5·13-s + 17-s + 6·19-s + 4·23-s − 5·25-s − 5·27-s + 4·29-s − 5·33-s + 8·37-s + 5·39-s − 4·41-s − 6·43-s + 6·47-s + 51-s + 11·53-s + 6·57-s − 10·59-s + 10·67-s + 4·69-s + 9·71-s − 4·73-s − 5·75-s + 9·79-s + 81-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 2/3·9-s − 1.50·11-s + 1.38·13-s + 0.242·17-s + 1.37·19-s + 0.834·23-s − 25-s − 0.962·27-s + 0.742·29-s − 0.870·33-s + 1.31·37-s + 0.800·39-s − 0.624·41-s − 0.914·43-s + 0.875·47-s + 0.140·51-s + 1.51·53-s + 0.794·57-s − 1.30·59-s + 1.22·67-s + 0.481·69-s + 1.06·71-s − 0.468·73-s − 0.577·75-s + 1.01·79-s + 1/9·81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.114165793\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.114165793\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 17 | \( 1 - T \) |
good | 3 | \( 1 - T + p T^{2} \) |
| 5 | \( 1 + p T^{2} \) |
| 11 | \( 1 + 5 T + p T^{2} \) |
| 13 | \( 1 - 5 T + p T^{2} \) |
| 19 | \( 1 - 6 T + p T^{2} \) |
| 23 | \( 1 - 4 T + p T^{2} \) |
| 29 | \( 1 - 4 T + p T^{2} \) |
| 31 | \( 1 + p T^{2} \) |
| 37 | \( 1 - 8 T + p T^{2} \) |
| 41 | \( 1 + 4 T + p T^{2} \) |
| 43 | \( 1 + 6 T + p T^{2} \) |
| 47 | \( 1 - 6 T + p T^{2} \) |
| 53 | \( 1 - 11 T + p T^{2} \) |
| 59 | \( 1 + 10 T + p T^{2} \) |
| 61 | \( 1 + p T^{2} \) |
| 67 | \( 1 - 10 T + p T^{2} \) |
| 71 | \( 1 - 9 T + p T^{2} \) |
| 73 | \( 1 + 4 T + p T^{2} \) |
| 79 | \( 1 - 9 T + p T^{2} \) |
| 83 | \( 1 + 4 T + p T^{2} \) |
| 89 | \( 1 - 15 T + p T^{2} \) |
| 97 | \( 1 - 18 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.525660609948937391421088526160, −7.955765237844670697954364389904, −7.41172189993609815460068814708, −6.26466643131549230083126258040, −5.58418891633662142237727958169, −4.92349843099561163420302937605, −3.65727267712361259907847714013, −3.07998893972865726925809645422, −2.22933027974968160366994785789, −0.843059013728295182413899131278,
0.843059013728295182413899131278, 2.22933027974968160366994785789, 3.07998893972865726925809645422, 3.65727267712361259907847714013, 4.92349843099561163420302937605, 5.58418891633662142237727958169, 6.26466643131549230083126258040, 7.41172189993609815460068814708, 7.955765237844670697954364389904, 8.525660609948937391421088526160