Properties

Label 2-3332-1.1-c1-0-14
Degree $2$
Conductor $3332$
Sign $1$
Analytic cond. $26.6061$
Root an. cond. $5.15811$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.381·3-s + 1.38·5-s − 2.85·9-s − 3.23·13-s + 0.527·15-s + 17-s − 2.47·19-s + 5.23·23-s − 3.09·25-s − 2.23·27-s + 2.76·29-s + 9.56·31-s + 3.70·37-s − 1.23·39-s − 1.14·41-s + 4.85·43-s − 3.94·45-s + 10.9·47-s + 0.381·51-s + 12.3·53-s − 0.944·57-s + 5.23·59-s + 12.5·61-s − 4.47·65-s − 5.09·67-s + 2·69-s − 4.76·71-s + ⋯
L(s)  = 1  + 0.220·3-s + 0.618·5-s − 0.951·9-s − 0.897·13-s + 0.136·15-s + 0.242·17-s − 0.567·19-s + 1.09·23-s − 0.618·25-s − 0.430·27-s + 0.513·29-s + 1.71·31-s + 0.609·37-s − 0.197·39-s − 0.178·41-s + 0.740·43-s − 0.587·45-s + 1.59·47-s + 0.0534·51-s + 1.69·53-s − 0.125·57-s + 0.681·59-s + 1.60·61-s − 0.554·65-s − 0.621·67-s + 0.240·69-s − 0.565·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3332\)    =    \(2^{2} \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(26.6061\)
Root analytic conductor: \(5.15811\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3332,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.987570990\)
\(L(\frac12)\) \(\approx\) \(1.987570990\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
17 \( 1 - T \)
good3 \( 1 - 0.381T + 3T^{2} \)
5 \( 1 - 1.38T + 5T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 + 3.23T + 13T^{2} \)
19 \( 1 + 2.47T + 19T^{2} \)
23 \( 1 - 5.23T + 23T^{2} \)
29 \( 1 - 2.76T + 29T^{2} \)
31 \( 1 - 9.56T + 31T^{2} \)
37 \( 1 - 3.70T + 37T^{2} \)
41 \( 1 + 1.14T + 41T^{2} \)
43 \( 1 - 4.85T + 43T^{2} \)
47 \( 1 - 10.9T + 47T^{2} \)
53 \( 1 - 12.3T + 53T^{2} \)
59 \( 1 - 5.23T + 59T^{2} \)
61 \( 1 - 12.5T + 61T^{2} \)
67 \( 1 + 5.09T + 67T^{2} \)
71 \( 1 + 4.76T + 71T^{2} \)
73 \( 1 + 2.85T + 73T^{2} \)
79 \( 1 + 1.70T + 79T^{2} \)
83 \( 1 + 1.52T + 83T^{2} \)
89 \( 1 - 13.2T + 89T^{2} \)
97 \( 1 - 3.85T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.724832633151008969326041321433, −7.939841840103145987156685408306, −7.15923958658699610569064113328, −6.29904525058262122446691698769, −5.63277144071430641358938984762, −4.88997697047779949498382368269, −3.94229319795948761347162377097, −2.73815711541078551966990732591, −2.33897299870422614144443771330, −0.820921076811590809590745864719, 0.820921076811590809590745864719, 2.33897299870422614144443771330, 2.73815711541078551966990732591, 3.94229319795948761347162377097, 4.88997697047779949498382368269, 5.63277144071430641358938984762, 6.29904525058262122446691698769, 7.15923958658699610569064113328, 7.939841840103145987156685408306, 8.724832633151008969326041321433

Graph of the $Z$-function along the critical line