Properties

Label 2-3328-8.5-c1-0-56
Degree 22
Conductor 33283328
Sign 0.707+0.707i0.707 + 0.707i
Analytic cond. 26.574226.5742
Root an. cond. 5.155015.15501
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·3-s i·5-s + 3·7-s + 2·9-s + 2i·11-s + i·13-s − 15-s − 3·17-s − 2i·19-s − 3i·21-s + 4·23-s + 4·25-s − 5i·27-s + 2i·29-s − 4·31-s + ⋯
L(s)  = 1  − 0.577i·3-s − 0.447i·5-s + 1.13·7-s + 0.666·9-s + 0.603i·11-s + 0.277i·13-s − 0.258·15-s − 0.727·17-s − 0.458i·19-s − 0.654i·21-s + 0.834·23-s + 0.800·25-s − 0.962i·27-s + 0.371i·29-s − 0.718·31-s + ⋯

Functional equation

Λ(s)=(3328s/2ΓC(s)L(s)=((0.707+0.707i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(3328s/2ΓC(s+1/2)L(s)=((0.707+0.707i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 33283328    =    28132^{8} \cdot 13
Sign: 0.707+0.707i0.707 + 0.707i
Analytic conductor: 26.574226.5742
Root analytic conductor: 5.155015.15501
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ3328(1665,)\chi_{3328} (1665, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 3328, ( :1/2), 0.707+0.707i)(2,\ 3328,\ (\ :1/2),\ 0.707 + 0.707i)

Particular Values

L(1)L(1) \approx 2.4007898232.400789823
L(12)L(\frac12) \approx 2.4007898232.400789823
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
13 1iT 1 - iT
good3 1+iT3T2 1 + iT - 3T^{2}
5 1+iT5T2 1 + iT - 5T^{2}
7 13T+7T2 1 - 3T + 7T^{2}
11 12iT11T2 1 - 2iT - 11T^{2}
17 1+3T+17T2 1 + 3T + 17T^{2}
19 1+2iT19T2 1 + 2iT - 19T^{2}
23 14T+23T2 1 - 4T + 23T^{2}
29 12iT29T2 1 - 2iT - 29T^{2}
31 1+4T+31T2 1 + 4T + 31T^{2}
37 1+5iT37T2 1 + 5iT - 37T^{2}
41 112T+41T2 1 - 12T + 41T^{2}
43 17iT43T2 1 - 7iT - 43T^{2}
47 19T+47T2 1 - 9T + 47T^{2}
53 1+4iT53T2 1 + 4iT - 53T^{2}
59 16iT59T2 1 - 6iT - 59T^{2}
61 1+4iT61T2 1 + 4iT - 61T^{2}
67 110iT67T2 1 - 10iT - 67T^{2}
71 1+15T+71T2 1 + 15T + 71T^{2}
73 12T+73T2 1 - 2T + 73T^{2}
79 18T+79T2 1 - 8T + 79T^{2}
83 14iT83T2 1 - 4iT - 83T^{2}
89 1+2T+89T2 1 + 2T + 89T^{2}
97 110T+97T2 1 - 10T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.628387802360297444039085334453, −7.50211611712680101994387131035, −7.32767881993696853970978007488, −6.42416732087092013598387706853, −5.38607867962064949987032330061, −4.60549786053395597259857643766, −4.17543957128242856597877921997, −2.63266241948440037720055765942, −1.76602891595524199945264321345, −0.944510207715478198284809024647, 1.04747734778876854886060885548, 2.19254625144669468143236401663, 3.24796225218268772921656850650, 4.15457340430832945190843238100, 4.80604899610561460037535656113, 5.56761019982169990166111603987, 6.49476624921280522772804785712, 7.35400998102095319157005823962, 7.905114463359413762411237583990, 8.880157672028371211683869038403

Graph of the ZZ-function along the critical line