Properties

Label 2-3328-1.1-c1-0-53
Degree $2$
Conductor $3328$
Sign $-1$
Analytic cond. $26.5742$
Root an. cond. $5.15501$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 3.46·5-s − 4.73·7-s + 9-s − 1.26·11-s + 13-s − 6.92·15-s − 1.46·17-s + 2.73·19-s + 9.46·21-s + 4·23-s + 6.99·25-s + 4·27-s + 2·29-s + 3.26·31-s + 2.53·33-s − 16.3·35-s − 4.92·37-s − 2·39-s + 4.92·41-s − 7.46·43-s + 3.46·45-s − 3.26·47-s + 15.3·49-s + 2.92·51-s − 10.9·53-s − 4.39·55-s + ⋯
L(s)  = 1  − 1.15·3-s + 1.54·5-s − 1.78·7-s + 0.333·9-s − 0.382·11-s + 0.277·13-s − 1.78·15-s − 0.355·17-s + 0.626·19-s + 2.06·21-s + 0.834·23-s + 1.39·25-s + 0.769·27-s + 0.371·29-s + 0.586·31-s + 0.441·33-s − 2.77·35-s − 0.810·37-s − 0.320·39-s + 0.769·41-s − 1.13·43-s + 0.516·45-s − 0.476·47-s + 2.19·49-s + 0.410·51-s − 1.50·53-s − 0.592·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3328\)    =    \(2^{8} \cdot 13\)
Sign: $-1$
Analytic conductor: \(26.5742\)
Root analytic conductor: \(5.15501\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3328,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 - T \)
good3 \( 1 + 2T + 3T^{2} \)
5 \( 1 - 3.46T + 5T^{2} \)
7 \( 1 + 4.73T + 7T^{2} \)
11 \( 1 + 1.26T + 11T^{2} \)
17 \( 1 + 1.46T + 17T^{2} \)
19 \( 1 - 2.73T + 19T^{2} \)
23 \( 1 - 4T + 23T^{2} \)
29 \( 1 - 2T + 29T^{2} \)
31 \( 1 - 3.26T + 31T^{2} \)
37 \( 1 + 4.92T + 37T^{2} \)
41 \( 1 - 4.92T + 41T^{2} \)
43 \( 1 + 7.46T + 43T^{2} \)
47 \( 1 + 3.26T + 47T^{2} \)
53 \( 1 + 10.9T + 53T^{2} \)
59 \( 1 - 0.196T + 59T^{2} \)
61 \( 1 + 10.9T + 61T^{2} \)
67 \( 1 - 2.73T + 67T^{2} \)
71 \( 1 - 2.19T + 71T^{2} \)
73 \( 1 - 0.535T + 73T^{2} \)
79 \( 1 - 1.46T + 79T^{2} \)
83 \( 1 + 6.73T + 83T^{2} \)
89 \( 1 + 17.3T + 89T^{2} \)
97 \( 1 + 14.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.421768039344332912647260534785, −7.02466158959207042750293258863, −6.55183678665599704264604929439, −6.01420822673738570039505721140, −5.46921393564510062976260249087, −4.70848473325103872134674318298, −3.27236467659574286610776952443, −2.64962129805366893174059436602, −1.28135477877815821206375449957, 0, 1.28135477877815821206375449957, 2.64962129805366893174059436602, 3.27236467659574286610776952443, 4.70848473325103872134674318298, 5.46921393564510062976260249087, 6.01420822673738570039505721140, 6.55183678665599704264604929439, 7.02466158959207042750293258863, 8.421768039344332912647260534785

Graph of the $Z$-function along the critical line