| L(s) = 1 | + (−0.766 − 0.642i)3-s + (0.173 + 0.984i)9-s + (−0.766 − 1.32i)13-s + (0.5 + 0.866i)23-s + (−0.5 + 0.866i)25-s + (0.500 − 0.866i)27-s + (0.939 − 1.62i)29-s + (−0.939 − 1.62i)31-s + (−0.266 + 1.50i)39-s + (−0.173 − 0.300i)41-s + (0.173 − 0.300i)47-s + (−0.5 − 0.866i)49-s + (−0.5 − 0.866i)59-s + (0.173 − 0.984i)69-s + 1.87·71-s + ⋯ |
| L(s) = 1 | + (−0.766 − 0.642i)3-s + (0.173 + 0.984i)9-s + (−0.766 − 1.32i)13-s + (0.5 + 0.866i)23-s + (−0.5 + 0.866i)25-s + (0.500 − 0.866i)27-s + (0.939 − 1.62i)29-s + (−0.939 − 1.62i)31-s + (−0.266 + 1.50i)39-s + (−0.173 − 0.300i)41-s + (0.173 − 0.300i)47-s + (−0.5 − 0.866i)49-s + (−0.5 − 0.866i)59-s + (0.173 − 0.984i)69-s + 1.87·71-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.5 + 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.5 + 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6842030933\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.6842030933\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.766 + 0.642i)T \) |
| 23 | \( 1 + (-0.5 - 0.866i)T \) |
| good | 5 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.766 + 1.32i)T + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 29 | \( 1 + (-0.939 + 1.62i)T + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (0.939 + 1.62i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (0.173 + 0.300i)T + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.173 + 0.300i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - 1.87T + T^{2} \) |
| 73 | \( 1 + 1.87T + T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.269990978202875306561264204210, −7.70531723446236818058969416207, −7.19647530115848783465124195148, −6.21777205977920707838943791009, −5.56051320067499042150824832532, −5.00847003664686549122591045346, −3.91708101081398597790005577963, −2.79123495075364308532954693092, −1.83570701715485786169430284921, −0.46698019097156645973380625799,
1.38091654251952449792719728941, 2.71328754233653665205258922930, 3.73244920145056174546961957911, 4.70169740180242502520211415921, 4.97620770230451288103735839350, 6.12747999151061047139605696323, 6.73983787942239903431629116054, 7.32815135899593044910188833904, 8.605086363794085639190672856554, 9.059300683453926526952554073686