Properties

Label 2-3312-1.1-c1-0-6
Degree $2$
Conductor $3312$
Sign $1$
Analytic cond. $26.4464$
Root an. cond. $5.14261$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 3.12·11-s + 0.438·13-s − 5.12·17-s + 3.12·19-s − 23-s − 25-s − 3.56·29-s + 2.43·31-s + 8.24·37-s + 9.80·41-s + 8·43-s − 0.684·47-s − 7·49-s − 2·53-s + 6.24·55-s + 10.2·59-s − 4.24·61-s − 0.876·65-s − 3.12·67-s + 13.5·71-s − 14.6·73-s − 3.12·79-s + 14.2·83-s + 10.2·85-s − 11.3·89-s − 6.24·95-s + ⋯
L(s)  = 1  − 0.894·5-s − 0.941·11-s + 0.121·13-s − 1.24·17-s + 0.716·19-s − 0.208·23-s − 0.200·25-s − 0.661·29-s + 0.437·31-s + 1.35·37-s + 1.53·41-s + 1.21·43-s − 0.0998·47-s − 49-s − 0.274·53-s + 0.842·55-s + 1.33·59-s − 0.543·61-s − 0.108·65-s − 0.381·67-s + 1.60·71-s − 1.71·73-s − 0.351·79-s + 1.56·83-s + 1.11·85-s − 1.20·89-s − 0.640·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3312\)    =    \(2^{4} \cdot 3^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(26.4464\)
Root analytic conductor: \(5.14261\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3312,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.120773823\)
\(L(\frac12)\) \(\approx\) \(1.120773823\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
23 \( 1 + T \)
good5 \( 1 + 2T + 5T^{2} \)
7 \( 1 + 7T^{2} \)
11 \( 1 + 3.12T + 11T^{2} \)
13 \( 1 - 0.438T + 13T^{2} \)
17 \( 1 + 5.12T + 17T^{2} \)
19 \( 1 - 3.12T + 19T^{2} \)
29 \( 1 + 3.56T + 29T^{2} \)
31 \( 1 - 2.43T + 31T^{2} \)
37 \( 1 - 8.24T + 37T^{2} \)
41 \( 1 - 9.80T + 41T^{2} \)
43 \( 1 - 8T + 43T^{2} \)
47 \( 1 + 0.684T + 47T^{2} \)
53 \( 1 + 2T + 53T^{2} \)
59 \( 1 - 10.2T + 59T^{2} \)
61 \( 1 + 4.24T + 61T^{2} \)
67 \( 1 + 3.12T + 67T^{2} \)
71 \( 1 - 13.5T + 71T^{2} \)
73 \( 1 + 14.6T + 73T^{2} \)
79 \( 1 + 3.12T + 79T^{2} \)
83 \( 1 - 14.2T + 83T^{2} \)
89 \( 1 + 11.3T + 89T^{2} \)
97 \( 1 - 11.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.535185484525609968501016157686, −7.73580135228354232855793029670, −7.44229362665304822290993574684, −6.36900333951428284812280623387, −5.62550360975466260795004550715, −4.63465771887283410881463454096, −4.05740073099969839511991483442, −3.03936951224004166450175734061, −2.16336592544872534607461564469, −0.61040374913990718689447071714, 0.61040374913990718689447071714, 2.16336592544872534607461564469, 3.03936951224004166450175734061, 4.05740073099969839511991483442, 4.63465771887283410881463454096, 5.62550360975466260795004550715, 6.36900333951428284812280623387, 7.44229362665304822290993574684, 7.73580135228354232855793029670, 8.535185484525609968501016157686

Graph of the $Z$-function along the critical line