Properties

Label 2-3312-1.1-c1-0-54
Degree $2$
Conductor $3312$
Sign $-1$
Analytic cond. $26.4464$
Root an. cond. $5.14261$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.64·5-s − 2·7-s + 3.64·11-s − 5.29·13-s − 7.29·17-s − 5.64·19-s + 23-s + 8.29·25-s + 1.29·29-s − 9.29·31-s − 7.29·35-s − 8.93·37-s − 6·41-s − 5.64·43-s + 6·47-s − 3·49-s − 3.64·53-s + 13.2·55-s + 5.64·61-s − 19.2·65-s − 0.937·67-s − 6·71-s + 3.29·73-s − 7.29·77-s + 12.5·79-s − 8.35·83-s − 26.5·85-s + ⋯
L(s)  = 1  + 1.63·5-s − 0.755·7-s + 1.09·11-s − 1.46·13-s − 1.76·17-s − 1.29·19-s + 0.208·23-s + 1.65·25-s + 0.239·29-s − 1.66·31-s − 1.23·35-s − 1.46·37-s − 0.937·41-s − 0.860·43-s + 0.875·47-s − 0.428·49-s − 0.500·53-s + 1.79·55-s + 0.722·61-s − 2.39·65-s − 0.114·67-s − 0.712·71-s + 0.385·73-s − 0.830·77-s + 1.41·79-s − 0.916·83-s − 2.88·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3312\)    =    \(2^{4} \cdot 3^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(26.4464\)
Root analytic conductor: \(5.14261\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3312,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
23 \( 1 - T \)
good5 \( 1 - 3.64T + 5T^{2} \)
7 \( 1 + 2T + 7T^{2} \)
11 \( 1 - 3.64T + 11T^{2} \)
13 \( 1 + 5.29T + 13T^{2} \)
17 \( 1 + 7.29T + 17T^{2} \)
19 \( 1 + 5.64T + 19T^{2} \)
29 \( 1 - 1.29T + 29T^{2} \)
31 \( 1 + 9.29T + 31T^{2} \)
37 \( 1 + 8.93T + 37T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 + 5.64T + 43T^{2} \)
47 \( 1 - 6T + 47T^{2} \)
53 \( 1 + 3.64T + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 - 5.64T + 61T^{2} \)
67 \( 1 + 0.937T + 67T^{2} \)
71 \( 1 + 6T + 71T^{2} \)
73 \( 1 - 3.29T + 73T^{2} \)
79 \( 1 - 12.5T + 79T^{2} \)
83 \( 1 + 8.35T + 83T^{2} \)
89 \( 1 + 89T^{2} \)
97 \( 1 - 9.29T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.668396215754246675055005650996, −7.13312428964090338884834044388, −6.68991196873160555664829653624, −6.18216757456740641298113550233, −5.23350850982509651054349190581, −4.51730904458844689965659116656, −3.41868011976772141844343433347, −2.24626049600624909362497581254, −1.84643151191015255602108550029, 0, 1.84643151191015255602108550029, 2.24626049600624909362497581254, 3.41868011976772141844343433347, 4.51730904458844689965659116656, 5.23350850982509651054349190581, 6.18216757456740641298113550233, 6.68991196873160555664829653624, 7.13312428964090338884834044388, 8.668396215754246675055005650996

Graph of the $Z$-function along the critical line