L(s) = 1 | − 3.64·5-s + 4.81·7-s + 2.68·11-s − 3.85·13-s − 0.962·17-s − 4.21·19-s − 23-s + 8.29·25-s − 7.85·29-s − 7.85·31-s − 17.5·35-s + 11.0·37-s − 0.564·41-s + 5.57·43-s + 7.63·47-s + 16.2·49-s − 9.99·53-s − 9.78·55-s − 15.0·59-s − 0.683·61-s + 14.0·65-s + 10.7·67-s − 3.43·71-s + 0.0692·73-s + 12.9·77-s − 6.89·79-s − 1.31·83-s + ⋯ |
L(s) = 1 | − 1.63·5-s + 1.82·7-s + 0.808·11-s − 1.06·13-s − 0.233·17-s − 0.965·19-s − 0.208·23-s + 1.65·25-s − 1.45·29-s − 1.41·31-s − 2.96·35-s + 1.81·37-s − 0.0881·41-s + 0.850·43-s + 1.11·47-s + 2.31·49-s − 1.37·53-s − 1.31·55-s − 1.96·59-s − 0.0874·61-s + 1.74·65-s + 1.31·67-s − 0.407·71-s + 0.00809·73-s + 1.47·77-s − 0.775·79-s − 0.144·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 23 | \( 1 + T \) |
good | 5 | \( 1 + 3.64T + 5T^{2} \) |
| 7 | \( 1 - 4.81T + 7T^{2} \) |
| 11 | \( 1 - 2.68T + 11T^{2} \) |
| 13 | \( 1 + 3.85T + 13T^{2} \) |
| 17 | \( 1 + 0.962T + 17T^{2} \) |
| 19 | \( 1 + 4.21T + 19T^{2} \) |
| 29 | \( 1 + 7.85T + 29T^{2} \) |
| 31 | \( 1 + 7.85T + 31T^{2} \) |
| 37 | \( 1 - 11.0T + 37T^{2} \) |
| 41 | \( 1 + 0.564T + 41T^{2} \) |
| 43 | \( 1 - 5.57T + 43T^{2} \) |
| 47 | \( 1 - 7.63T + 47T^{2} \) |
| 53 | \( 1 + 9.99T + 53T^{2} \) |
| 59 | \( 1 + 15.0T + 59T^{2} \) |
| 61 | \( 1 + 0.683T + 61T^{2} \) |
| 67 | \( 1 - 10.7T + 67T^{2} \) |
| 71 | \( 1 + 3.43T + 71T^{2} \) |
| 73 | \( 1 - 0.0692T + 73T^{2} \) |
| 79 | \( 1 + 6.89T + 79T^{2} \) |
| 83 | \( 1 + 1.31T + 83T^{2} \) |
| 89 | \( 1 + 18.0T + 89T^{2} \) |
| 97 | \( 1 + 4.34T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.091914971385931974708007680556, −7.57741620277140129120631127526, −7.17022491623240044012394277041, −5.93565390527064604710146030158, −4.92937110005006297271384197073, −4.29390501124400462607238176342, −3.87213998405175838956484407541, −2.47510844392112336692588344023, −1.44439576424874226933410717039, 0,
1.44439576424874226933410717039, 2.47510844392112336692588344023, 3.87213998405175838956484407541, 4.29390501124400462607238176342, 4.92937110005006297271384197073, 5.93565390527064604710146030158, 7.17022491623240044012394277041, 7.57741620277140129120631127526, 8.091914971385931974708007680556