Properties

Label 2-3312-1.1-c1-0-19
Degree $2$
Conductor $3312$
Sign $1$
Analytic cond. $26.4464$
Root an. cond. $5.14261$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 4·7-s + 2·11-s − 5·13-s − 4·17-s + 2·19-s + 23-s − 25-s + 7·29-s + 3·31-s + 8·35-s + 2·37-s + 9·41-s + 8·43-s + 9·47-s + 9·49-s − 2·53-s + 4·55-s − 2·61-s − 10·65-s − 14·67-s − 3·71-s − 3·73-s + 8·77-s + 6·79-s + 8·83-s − 8·85-s + ⋯
L(s)  = 1  + 0.894·5-s + 1.51·7-s + 0.603·11-s − 1.38·13-s − 0.970·17-s + 0.458·19-s + 0.208·23-s − 1/5·25-s + 1.29·29-s + 0.538·31-s + 1.35·35-s + 0.328·37-s + 1.40·41-s + 1.21·43-s + 1.31·47-s + 9/7·49-s − 0.274·53-s + 0.539·55-s − 0.256·61-s − 1.24·65-s − 1.71·67-s − 0.356·71-s − 0.351·73-s + 0.911·77-s + 0.675·79-s + 0.878·83-s − 0.867·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3312\)    =    \(2^{4} \cdot 3^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(26.4464\)
Root analytic conductor: \(5.14261\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3312,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.717638386\)
\(L(\frac12)\) \(\approx\) \(2.717638386\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
23 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \)
7 \( 1 - 4 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 + 5 T + p T^{2} \)
17 \( 1 + 4 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
29 \( 1 - 7 T + p T^{2} \)
31 \( 1 - 3 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 - 9 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 9 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 + 14 T + p T^{2} \)
71 \( 1 + 3 T + p T^{2} \)
73 \( 1 + 3 T + p T^{2} \)
79 \( 1 - 6 T + p T^{2} \)
83 \( 1 - 8 T + p T^{2} \)
89 \( 1 + 12 T + p T^{2} \)
97 \( 1 + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.762474026916601727659642248899, −7.78431087011820196153358198018, −7.28380268960996565959039707529, −6.30231354857361067552946600683, −5.58252703725131255817507716797, −4.68687938596758625929687535386, −4.32763445735159785512127137050, −2.70442367409739251308486042341, −2.08210841090047127789623388388, −1.04926008910287368677124435543, 1.04926008910287368677124435543, 2.08210841090047127789623388388, 2.70442367409739251308486042341, 4.32763445735159785512127137050, 4.68687938596758625929687535386, 5.58252703725131255817507716797, 6.30231354857361067552946600683, 7.28380268960996565959039707529, 7.78431087011820196153358198018, 8.762474026916601727659642248899

Graph of the $Z$-function along the critical line