L(s) = 1 | − 1.64·5-s + 1.01·7-s + 5.21·11-s + 2.55·13-s + 3.56·17-s − 3.09·19-s + 23-s − 2.29·25-s + 1.44·29-s − 1.44·31-s − 1.66·35-s + 6.10·37-s + 4.73·41-s − 11.3·43-s − 0.0221·47-s − 5.97·49-s + 7.66·53-s − 8.57·55-s + 3.28·59-s + 7.21·61-s − 4.20·65-s − 11.4·67-s − 0.736·71-s + 11.6·73-s + 5.26·77-s + 2.12·79-s + 9.21·83-s + ⋯ |
L(s) = 1 | − 0.736·5-s + 0.382·7-s + 1.57·11-s + 0.708·13-s + 0.864·17-s − 0.709·19-s + 0.208·23-s − 0.458·25-s + 0.268·29-s − 0.259·31-s − 0.281·35-s + 1.00·37-s + 0.739·41-s − 1.72·43-s − 0.00323·47-s − 0.853·49-s + 1.05·53-s − 1.15·55-s + 0.427·59-s + 0.923·61-s − 0.521·65-s − 1.40·67-s − 0.0874·71-s + 1.36·73-s + 0.600·77-s + 0.238·79-s + 1.01·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.948097043\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.948097043\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 23 | \( 1 - T \) |
good | 5 | \( 1 + 1.64T + 5T^{2} \) |
| 7 | \( 1 - 1.01T + 7T^{2} \) |
| 11 | \( 1 - 5.21T + 11T^{2} \) |
| 13 | \( 1 - 2.55T + 13T^{2} \) |
| 17 | \( 1 - 3.56T + 17T^{2} \) |
| 19 | \( 1 + 3.09T + 19T^{2} \) |
| 29 | \( 1 - 1.44T + 29T^{2} \) |
| 31 | \( 1 + 1.44T + 31T^{2} \) |
| 37 | \( 1 - 6.10T + 37T^{2} \) |
| 41 | \( 1 - 4.73T + 41T^{2} \) |
| 43 | \( 1 + 11.3T + 43T^{2} \) |
| 47 | \( 1 + 0.0221T + 47T^{2} \) |
| 53 | \( 1 - 7.66T + 53T^{2} \) |
| 59 | \( 1 - 3.28T + 59T^{2} \) |
| 61 | \( 1 - 7.21T + 61T^{2} \) |
| 67 | \( 1 + 11.4T + 67T^{2} \) |
| 71 | \( 1 + 0.736T + 71T^{2} \) |
| 73 | \( 1 - 11.6T + 73T^{2} \) |
| 79 | \( 1 - 2.12T + 79T^{2} \) |
| 83 | \( 1 - 9.21T + 83T^{2} \) |
| 89 | \( 1 + 7.96T + 89T^{2} \) |
| 97 | \( 1 + 7.31T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.490892432170127232303134566773, −8.035661720421078777649551532649, −7.13137043739072417444648524538, −6.43378470333865677237585725110, −5.69754992257747941192472380377, −4.59664950795368886719792791491, −3.93095555862608866189639992860, −3.29706013685581951883348985007, −1.87858449954833478737123682163, −0.880996477802219952126540561766,
0.880996477802219952126540561766, 1.87858449954833478737123682163, 3.29706013685581951883348985007, 3.93095555862608866189639992860, 4.59664950795368886719792791491, 5.69754992257747941192472380377, 6.43378470333865677237585725110, 7.13137043739072417444648524538, 8.035661720421078777649551532649, 8.490892432170127232303134566773