Properties

Label 2-33-33.32-c5-0-8
Degree $2$
Conductor $33$
Sign $0.200 + 0.979i$
Analytic cond. $5.29266$
Root an. cond. $2.30057$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 8.47·2-s + (11.5 − 10.4i)3-s + 39.8·4-s + 35.7i·5-s + (−98.3 + 88.3i)6-s − 11.5i·7-s − 66.9·8-s + (25.9 − 241. i)9-s − 302. i·10-s + (202. − 346. i)11-s + (462. − 415. i)12-s − 933. i·13-s + 98.0i·14-s + (371. + 414. i)15-s − 708.·16-s + 25.0·17-s + ⋯
L(s)  = 1  − 1.49·2-s + (0.743 − 0.668i)3-s + 1.24·4-s + 0.638i·5-s + (−1.11 + 1.00i)6-s − 0.0892i·7-s − 0.369·8-s + (0.106 − 0.994i)9-s − 0.957i·10-s + (0.505 − 0.862i)11-s + (0.927 − 0.833i)12-s − 1.53i·13-s + 0.133i·14-s + (0.426 + 0.475i)15-s − 0.692·16-s + 0.0210·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.200 + 0.979i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.200 + 0.979i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33\)    =    \(3 \cdot 11\)
Sign: $0.200 + 0.979i$
Analytic conductor: \(5.29266\)
Root analytic conductor: \(2.30057\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{33} (32, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 33,\ (\ :5/2),\ 0.200 + 0.979i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.688370 - 0.561667i\)
\(L(\frac12)\) \(\approx\) \(0.688370 - 0.561667i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-11.5 + 10.4i)T \)
11 \( 1 + (-202. + 346. i)T \)
good2 \( 1 + 8.47T + 32T^{2} \)
5 \( 1 - 35.7iT - 3.12e3T^{2} \)
7 \( 1 + 11.5iT - 1.68e4T^{2} \)
13 \( 1 + 933. iT - 3.71e5T^{2} \)
17 \( 1 - 25.0T + 1.41e6T^{2} \)
19 \( 1 + 743. iT - 2.47e6T^{2} \)
23 \( 1 + 594. iT - 6.43e6T^{2} \)
29 \( 1 - 3.97e3T + 2.05e7T^{2} \)
31 \( 1 + 3.07e3T + 2.86e7T^{2} \)
37 \( 1 - 1.03e4T + 6.93e7T^{2} \)
41 \( 1 + 1.77e4T + 1.15e8T^{2} \)
43 \( 1 - 2.29e4iT - 1.47e8T^{2} \)
47 \( 1 + 3.40e3iT - 2.29e8T^{2} \)
53 \( 1 - 1.23e4iT - 4.18e8T^{2} \)
59 \( 1 + 3.03e4iT - 7.14e8T^{2} \)
61 \( 1 + 3.64e4iT - 8.44e8T^{2} \)
67 \( 1 + 2.85e4T + 1.35e9T^{2} \)
71 \( 1 - 5.93e4iT - 1.80e9T^{2} \)
73 \( 1 - 7.24e4iT - 2.07e9T^{2} \)
79 \( 1 + 2.69e4iT - 3.07e9T^{2} \)
83 \( 1 + 3.24e4T + 3.93e9T^{2} \)
89 \( 1 - 1.08e4iT - 5.58e9T^{2} \)
97 \( 1 + 1.05e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.56786552829691347458253393883, −14.34205717748771850379247658482, −13.02314966247554673874890933472, −11.28268057662488946700174418293, −10.08627826445052192044147684540, −8.744513331654198813377384850660, −7.81237656243508983208494042931, −6.55609532204247548345693937253, −2.91695891253145075028212819410, −0.864255537177516523426622375664, 1.79249125903142106547943534661, 4.44312828011179215565873337747, 7.17203633262435375463875631284, 8.639641716900705013651104817372, 9.298171311100419878483406044559, 10.34838958729091593718132747468, 11.89962364525119523905927414346, 13.73696319633539224978001729538, 15.07934799744476461845267403328, 16.40706204583812295463208231663

Graph of the $Z$-function along the critical line