Properties

Label 2-33-33.32-c5-0-12
Degree $2$
Conductor $33$
Sign $-0.775 - 0.630i$
Analytic cond. $5.29266$
Root an. cond. $2.30057$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 10.1·2-s + (−10.9 − 11.0i)3-s + 70.2·4-s − 88.5i·5-s + (110. + 112. i)6-s − 126. i·7-s − 387.·8-s + (−2.70 + 242. i)9-s + 895. i·10-s + (−398. + 43.3i)11-s + (−770. − 779. i)12-s − 523. i·13-s + 1.27e3i·14-s + (−981. + 970. i)15-s + 1.66e3·16-s + 1.03e3·17-s + ⋯
L(s)  = 1  − 1.78·2-s + (−0.703 − 0.711i)3-s + 2.19·4-s − 1.58i·5-s + (1.25 + 1.27i)6-s − 0.973i·7-s − 2.13·8-s + (−0.0111 + 0.999i)9-s + 2.83i·10-s + (−0.994 + 0.108i)11-s + (−1.54 − 1.56i)12-s − 0.858i·13-s + 1.74i·14-s + (−1.12 + 1.11i)15-s + 1.62·16-s + 0.872·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.775 - 0.630i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.775 - 0.630i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33\)    =    \(3 \cdot 11\)
Sign: $-0.775 - 0.630i$
Analytic conductor: \(5.29266\)
Root analytic conductor: \(2.30057\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{33} (32, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 33,\ (\ :5/2),\ -0.775 - 0.630i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.0824617 + 0.232144i\)
\(L(\frac12)\) \(\approx\) \(0.0824617 + 0.232144i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (10.9 + 11.0i)T \)
11 \( 1 + (398. - 43.3i)T \)
good2 \( 1 + 10.1T + 32T^{2} \)
5 \( 1 + 88.5iT - 3.12e3T^{2} \)
7 \( 1 + 126. iT - 1.68e4T^{2} \)
13 \( 1 + 523. iT - 3.71e5T^{2} \)
17 \( 1 - 1.03e3T + 1.41e6T^{2} \)
19 \( 1 - 842. iT - 2.47e6T^{2} \)
23 \( 1 - 2.47e3iT - 6.43e6T^{2} \)
29 \( 1 + 3.56e3T + 2.05e7T^{2} \)
31 \( 1 + 215.T + 2.86e7T^{2} \)
37 \( 1 + 3.62e3T + 6.93e7T^{2} \)
41 \( 1 - 8.84e3T + 1.15e8T^{2} \)
43 \( 1 - 5.26e3iT - 1.47e8T^{2} \)
47 \( 1 + 9.05e3iT - 2.29e8T^{2} \)
53 \( 1 + 897. iT - 4.18e8T^{2} \)
59 \( 1 + 3.62e4iT - 7.14e8T^{2} \)
61 \( 1 + 1.53e4iT - 8.44e8T^{2} \)
67 \( 1 + 5.33e4T + 1.35e9T^{2} \)
71 \( 1 - 3.36e4iT - 1.80e9T^{2} \)
73 \( 1 + 7.61e4iT - 2.07e9T^{2} \)
79 \( 1 - 1.06e5iT - 3.07e9T^{2} \)
83 \( 1 + 2.03e4T + 3.93e9T^{2} \)
89 \( 1 - 1.18e4iT - 5.58e9T^{2} \)
97 \( 1 + 6.77e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.85698570443151353278979988567, −13.28491090587079958061540631095, −12.25727167107227760162227384539, −10.85330313377840753725632829307, −9.784049103250457653914511247454, −8.147622261027201261152879894351, −7.51166759825035713652152351733, −5.48858154712586665839277204210, −1.38088066271545675011886398154, −0.30186416634300794197142816645, 2.66828938336921261610340364704, 6.03507705400835892530163598063, 7.30074091747122664789371567618, 9.001852541811279521315864327464, 10.19635767576590402647360014061, 10.92451149859510365657638156390, 11.90447111825548850611993601148, 14.73069649984278873879907489620, 15.61011182171973702145000080319, 16.55452714398702829050760480664

Graph of the $Z$-function along the critical line