Properties

Label 2-33-11.4-c5-0-9
Degree $2$
Conductor $33$
Sign $-0.943 - 0.330i$
Analytic cond. $5.29266$
Root an. cond. $2.30057$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.590 − 0.429i)2-s + (2.78 − 8.55i)3-s + (−9.72 − 29.9i)4-s + (−77.5 + 56.3i)5-s + (−5.31 + 3.86i)6-s + (29.5 + 91.0i)7-s + (−14.3 + 44.0i)8-s + (−65.5 − 47.6i)9-s + 69.9·10-s + (−386. + 106. i)11-s − 283.·12-s + (−573. − 416. i)13-s + (21.5 − 66.4i)14-s + (266. + 820. i)15-s + (−787. + 571. i)16-s + (815. − 592. i)17-s + ⋯
L(s)  = 1  + (−0.104 − 0.0758i)2-s + (0.178 − 0.549i)3-s + (−0.303 − 0.935i)4-s + (−1.38 + 1.00i)5-s + (−0.0602 + 0.0438i)6-s + (0.228 + 0.702i)7-s + (−0.0791 + 0.243i)8-s + (−0.269 − 0.195i)9-s + 0.221·10-s + (−0.964 + 0.264i)11-s − 0.567·12-s + (−0.940 − 0.683i)13-s + (0.0294 − 0.0906i)14-s + (0.305 + 0.941i)15-s + (−0.768 + 0.558i)16-s + (0.684 − 0.497i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.943 - 0.330i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.943 - 0.330i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33\)    =    \(3 \cdot 11\)
Sign: $-0.943 - 0.330i$
Analytic conductor: \(5.29266\)
Root analytic conductor: \(2.30057\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{33} (4, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 33,\ (\ :5/2),\ -0.943 - 0.330i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.0174257 + 0.102631i\)
\(L(\frac12)\) \(\approx\) \(0.0174257 + 0.102631i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-2.78 + 8.55i)T \)
11 \( 1 + (386. - 106. i)T \)
good2 \( 1 + (0.590 + 0.429i)T + (9.88 + 30.4i)T^{2} \)
5 \( 1 + (77.5 - 56.3i)T + (965. - 2.97e3i)T^{2} \)
7 \( 1 + (-29.5 - 91.0i)T + (-1.35e4 + 9.87e3i)T^{2} \)
13 \( 1 + (573. + 416. i)T + (1.14e5 + 3.53e5i)T^{2} \)
17 \( 1 + (-815. + 592. i)T + (4.38e5 - 1.35e6i)T^{2} \)
19 \( 1 + (-580. + 1.78e3i)T + (-2.00e6 - 1.45e6i)T^{2} \)
23 \( 1 + 2.81e3T + 6.43e6T^{2} \)
29 \( 1 + (-1.56e3 - 4.80e3i)T + (-1.65e7 + 1.20e7i)T^{2} \)
31 \( 1 + (-1.58e3 - 1.15e3i)T + (8.84e6 + 2.72e7i)T^{2} \)
37 \( 1 + (649. + 1.99e3i)T + (-5.61e7 + 4.07e7i)T^{2} \)
41 \( 1 + (-1.40e3 + 4.33e3i)T + (-9.37e7 - 6.80e7i)T^{2} \)
43 \( 1 + 2.24e4T + 1.47e8T^{2} \)
47 \( 1 + (2.39e3 - 7.38e3i)T + (-1.85e8 - 1.34e8i)T^{2} \)
53 \( 1 + (1.34e4 + 9.78e3i)T + (1.29e8 + 3.97e8i)T^{2} \)
59 \( 1 + (-605. - 1.86e3i)T + (-5.78e8 + 4.20e8i)T^{2} \)
61 \( 1 + (3.25e4 - 2.36e4i)T + (2.60e8 - 8.03e8i)T^{2} \)
67 \( 1 - 5.50e4T + 1.35e9T^{2} \)
71 \( 1 + (-2.16e4 + 1.57e4i)T + (5.57e8 - 1.71e9i)T^{2} \)
73 \( 1 + (-2.03e4 - 6.26e4i)T + (-1.67e9 + 1.21e9i)T^{2} \)
79 \( 1 + (7.55e3 + 5.49e3i)T + (9.50e8 + 2.92e9i)T^{2} \)
83 \( 1 + (3.13e4 - 2.27e4i)T + (1.21e9 - 3.74e9i)T^{2} \)
89 \( 1 + 1.37e5T + 5.58e9T^{2} \)
97 \( 1 + (-4.52e3 - 3.29e3i)T + (2.65e9 + 8.16e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.07242636167751527076303631053, −14.09385202531975930268793012745, −12.38439330241812691494844784963, −11.28169241638426622580728464422, −10.04179108508712285773293841140, −8.225257109416943595350856188342, −7.07016380323749001396838937732, −5.16347346102177772965298003696, −2.75109752626870555623635045288, −0.06207925930904903018015924759, 3.69570443467343069702597426923, 4.71146373460754586735187142523, 7.77750039305281511209323925772, 8.199510819506230932370088600897, 9.886034581496366612171044173109, 11.67277950800595582537042633803, 12.50176713465661668990263787967, 13.90939575225949635667047215188, 15.49088266537125611485799134860, 16.49161862281927973020286844358

Graph of the $Z$-function along the critical line