Properties

Label 2-33-11.3-c5-0-0
Degree $2$
Conductor $33$
Sign $-0.943 + 0.330i$
Analytic cond. $5.29266$
Root an. cond. $2.30057$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.590 + 0.429i)2-s + (2.78 + 8.55i)3-s + (−9.72 + 29.9i)4-s + (−77.5 − 56.3i)5-s + (−5.31 − 3.86i)6-s + (29.5 − 91.0i)7-s + (−14.3 − 44.0i)8-s + (−65.5 + 47.6i)9-s + 69.9·10-s + (−386. − 106. i)11-s − 283.·12-s + (−573. + 416. i)13-s + (21.5 + 66.4i)14-s + (266. − 820. i)15-s + (−787. − 571. i)16-s + (815. + 592. i)17-s + ⋯
L(s)  = 1  + (−0.104 + 0.0758i)2-s + (0.178 + 0.549i)3-s + (−0.303 + 0.935i)4-s + (−1.38 − 1.00i)5-s + (−0.0602 − 0.0438i)6-s + (0.228 − 0.702i)7-s + (−0.0791 − 0.243i)8-s + (−0.269 + 0.195i)9-s + 0.221·10-s + (−0.964 − 0.264i)11-s − 0.567·12-s + (−0.940 + 0.683i)13-s + (0.0294 + 0.0906i)14-s + (0.305 − 0.941i)15-s + (−0.768 − 0.558i)16-s + (0.684 + 0.497i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.943 + 0.330i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.943 + 0.330i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33\)    =    \(3 \cdot 11\)
Sign: $-0.943 + 0.330i$
Analytic conductor: \(5.29266\)
Root analytic conductor: \(2.30057\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{33} (25, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 33,\ (\ :5/2),\ -0.943 + 0.330i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.0174257 - 0.102631i\)
\(L(\frac12)\) \(\approx\) \(0.0174257 - 0.102631i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-2.78 - 8.55i)T \)
11 \( 1 + (386. + 106. i)T \)
good2 \( 1 + (0.590 - 0.429i)T + (9.88 - 30.4i)T^{2} \)
5 \( 1 + (77.5 + 56.3i)T + (965. + 2.97e3i)T^{2} \)
7 \( 1 + (-29.5 + 91.0i)T + (-1.35e4 - 9.87e3i)T^{2} \)
13 \( 1 + (573. - 416. i)T + (1.14e5 - 3.53e5i)T^{2} \)
17 \( 1 + (-815. - 592. i)T + (4.38e5 + 1.35e6i)T^{2} \)
19 \( 1 + (-580. - 1.78e3i)T + (-2.00e6 + 1.45e6i)T^{2} \)
23 \( 1 + 2.81e3T + 6.43e6T^{2} \)
29 \( 1 + (-1.56e3 + 4.80e3i)T + (-1.65e7 - 1.20e7i)T^{2} \)
31 \( 1 + (-1.58e3 + 1.15e3i)T + (8.84e6 - 2.72e7i)T^{2} \)
37 \( 1 + (649. - 1.99e3i)T + (-5.61e7 - 4.07e7i)T^{2} \)
41 \( 1 + (-1.40e3 - 4.33e3i)T + (-9.37e7 + 6.80e7i)T^{2} \)
43 \( 1 + 2.24e4T + 1.47e8T^{2} \)
47 \( 1 + (2.39e3 + 7.38e3i)T + (-1.85e8 + 1.34e8i)T^{2} \)
53 \( 1 + (1.34e4 - 9.78e3i)T + (1.29e8 - 3.97e8i)T^{2} \)
59 \( 1 + (-605. + 1.86e3i)T + (-5.78e8 - 4.20e8i)T^{2} \)
61 \( 1 + (3.25e4 + 2.36e4i)T + (2.60e8 + 8.03e8i)T^{2} \)
67 \( 1 - 5.50e4T + 1.35e9T^{2} \)
71 \( 1 + (-2.16e4 - 1.57e4i)T + (5.57e8 + 1.71e9i)T^{2} \)
73 \( 1 + (-2.03e4 + 6.26e4i)T + (-1.67e9 - 1.21e9i)T^{2} \)
79 \( 1 + (7.55e3 - 5.49e3i)T + (9.50e8 - 2.92e9i)T^{2} \)
83 \( 1 + (3.13e4 + 2.27e4i)T + (1.21e9 + 3.74e9i)T^{2} \)
89 \( 1 + 1.37e5T + 5.58e9T^{2} \)
97 \( 1 + (-4.52e3 + 3.29e3i)T + (2.65e9 - 8.16e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.49161862281927973020286844358, −15.49088266537125611485799134860, −13.90939575225949635667047215188, −12.50176713465661668990263787967, −11.67277950800595582537042633803, −9.886034581496366612171044173109, −8.199510819506230932370088600897, −7.77750039305281511209323925772, −4.71146373460754586735187142523, −3.69570443467343069702597426923, 0.06207925930904903018015924759, 2.75109752626870555623635045288, 5.16347346102177772965298003696, 7.07016380323749001396838937732, 8.225257109416943595350856188342, 10.04179108508712285773293841140, 11.28169241638426622580728464422, 12.38439330241812691494844784963, 14.09385202531975930268793012745, 15.07242636167751527076303631053

Graph of the $Z$-function along the critical line