L(s) = 1 | + (−0.961 + 0.275i)3-s + (−0.997 + 0.0697i)4-s + (−0.603 − 1.13i)5-s + (0.848 − 0.529i)9-s + (0.939 − 0.342i)12-s + (0.893 + 0.924i)15-s + (0.990 − 0.139i)16-s + (0.681 + 1.09i)20-s + (1.11 + 1.32i)23-s + (−0.364 + 0.541i)25-s + (−0.669 + 0.743i)27-s + (−0.704 − 1.74i)31-s + (−0.809 + 0.587i)36-s + (0.160 − 1.52i)37-s + (−1.11 − 0.642i)45-s + ⋯ |
L(s) = 1 | + (−0.961 + 0.275i)3-s + (−0.997 + 0.0697i)4-s + (−0.603 − 1.13i)5-s + (0.848 − 0.529i)9-s + (0.939 − 0.342i)12-s + (0.893 + 0.924i)15-s + (0.990 − 0.139i)16-s + (0.681 + 1.09i)20-s + (1.11 + 1.32i)23-s + (−0.364 + 0.541i)25-s + (−0.669 + 0.743i)27-s + (−0.704 − 1.74i)31-s + (−0.809 + 0.587i)36-s + (0.160 − 1.52i)37-s + (−1.11 − 0.642i)45-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.508 + 0.860i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.508 + 0.860i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3989535026\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3989535026\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.961 - 0.275i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.997 - 0.0697i)T^{2} \) |
| 5 | \( 1 + (0.603 + 1.13i)T + (-0.559 + 0.829i)T^{2} \) |
| 7 | \( 1 + (-0.882 + 0.469i)T^{2} \) |
| 13 | \( 1 + (-0.241 - 0.970i)T^{2} \) |
| 17 | \( 1 + (0.104 + 0.994i)T^{2} \) |
| 19 | \( 1 + (-0.978 + 0.207i)T^{2} \) |
| 23 | \( 1 + (-1.11 - 1.32i)T + (-0.173 + 0.984i)T^{2} \) |
| 29 | \( 1 + (-0.848 - 0.529i)T^{2} \) |
| 31 | \( 1 + (0.704 + 1.74i)T + (-0.719 + 0.694i)T^{2} \) |
| 37 | \( 1 + (-0.160 + 1.52i)T + (-0.978 - 0.207i)T^{2} \) |
| 41 | \( 1 + (-0.848 + 0.529i)T^{2} \) |
| 43 | \( 1 + (-0.939 - 0.342i)T^{2} \) |
| 47 | \( 1 + (0.137 - 1.96i)T + (-0.990 - 0.139i)T^{2} \) |
| 53 | \( 1 + (-0.650 - 0.211i)T + (0.809 + 0.587i)T^{2} \) |
| 59 | \( 1 + (0.614 + 0.299i)T + (0.615 + 0.788i)T^{2} \) |
| 61 | \( 1 + (-0.719 - 0.694i)T^{2} \) |
| 67 | \( 1 + (1.76 + 0.642i)T + (0.766 + 0.642i)T^{2} \) |
| 71 | \( 1 + (1.46 + 1.31i)T + (0.104 + 0.994i)T^{2} \) |
| 73 | \( 1 + (0.669 - 0.743i)T^{2} \) |
| 79 | \( 1 + (-0.997 + 0.0697i)T^{2} \) |
| 83 | \( 1 + (0.241 - 0.970i)T^{2} \) |
| 89 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (0.306 + 0.163i)T + (0.559 + 0.829i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.854264195901192816654506350144, −7.72452324588543351406821303232, −7.34962839070075711596604510959, −5.87762602213018087825245735742, −5.54344172506659415394754150438, −4.55549471355499585879532697311, −4.29306045866062958129295332280, −3.34199869793690623848192383937, −1.41944040574097183292308647799, −0.35094893173131666264957077807,
1.18578131130032431433079430883, 2.76970330072519435964549412500, 3.68184239196444887737771970089, 4.57870220519723866228836849380, 5.19952629487998847587249146440, 6.10801797400915228449210130319, 6.95761465700692025701315038914, 7.29633118251189970589821361337, 8.385180495442933007971145950790, 8.927406315952561871730522670143