L(s) = 1 | + (−0.559 + 0.829i)3-s + (−0.241 − 0.970i)4-s + (−0.178 − 1.27i)5-s + (−0.374 − 0.927i)9-s + (0.939 + 0.342i)12-s + (1.15 + 0.563i)15-s + (−0.882 + 0.469i)16-s + (−1.19 + 0.481i)20-s + (1.11 − 1.32i)23-s + (−0.627 + 0.179i)25-s + (0.978 + 0.207i)27-s + (1.59 − 0.995i)31-s + (−0.809 + 0.587i)36-s + (−1.39 + 0.623i)37-s + (−1.11 + 0.642i)45-s + ⋯ |
L(s) = 1 | + (−0.559 + 0.829i)3-s + (−0.241 − 0.970i)4-s + (−0.178 − 1.27i)5-s + (−0.374 − 0.927i)9-s + (0.939 + 0.342i)12-s + (1.15 + 0.563i)15-s + (−0.882 + 0.469i)16-s + (−1.19 + 0.481i)20-s + (1.11 − 1.32i)23-s + (−0.627 + 0.179i)25-s + (0.978 + 0.207i)27-s + (1.59 − 0.995i)31-s + (−0.809 + 0.587i)36-s + (−1.39 + 0.623i)37-s + (−1.11 + 0.642i)45-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.693 + 0.720i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.693 + 0.720i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6501924790\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6501924790\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.559 - 0.829i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.241 + 0.970i)T^{2} \) |
| 5 | \( 1 + (0.178 + 1.27i)T + (-0.961 + 0.275i)T^{2} \) |
| 7 | \( 1 + (0.990 - 0.139i)T^{2} \) |
| 13 | \( 1 + (-0.997 + 0.0697i)T^{2} \) |
| 17 | \( 1 + (-0.913 - 0.406i)T^{2} \) |
| 19 | \( 1 + (0.669 + 0.743i)T^{2} \) |
| 23 | \( 1 + (-1.11 + 1.32i)T + (-0.173 - 0.984i)T^{2} \) |
| 29 | \( 1 + (0.374 - 0.927i)T^{2} \) |
| 31 | \( 1 + (-1.59 + 0.995i)T + (0.438 - 0.898i)T^{2} \) |
| 37 | \( 1 + (1.39 - 0.623i)T + (0.669 - 0.743i)T^{2} \) |
| 41 | \( 1 + (0.374 + 0.927i)T^{2} \) |
| 43 | \( 1 + (-0.939 + 0.342i)T^{2} \) |
| 47 | \( 1 + (1.91 + 0.476i)T + (0.882 + 0.469i)T^{2} \) |
| 53 | \( 1 + (0.650 + 0.211i)T + (0.809 + 0.587i)T^{2} \) |
| 59 | \( 1 + (0.475 + 0.492i)T + (-0.0348 + 0.999i)T^{2} \) |
| 61 | \( 1 + (0.438 + 0.898i)T^{2} \) |
| 67 | \( 1 + (1.76 - 0.642i)T + (0.766 - 0.642i)T^{2} \) |
| 71 | \( 1 + (-0.409 + 1.92i)T + (-0.913 - 0.406i)T^{2} \) |
| 73 | \( 1 + (-0.978 - 0.207i)T^{2} \) |
| 79 | \( 1 + (-0.241 - 0.970i)T^{2} \) |
| 83 | \( 1 + (0.997 + 0.0697i)T^{2} \) |
| 89 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.343 - 0.0483i)T + (0.961 + 0.275i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.699270719202463907257935943439, −8.164292483877205235540415414668, −6.68772133871202578362728135512, −6.21054684664485165061008286720, −5.18654805117585717387904045219, −4.81637060162895372814910173874, −4.30603242937156611023074841064, −3.05914474112378017396563099545, −1.50313559005068318091479531662, −0.44071445480457966093853497144,
1.61515187155055594884412285846, 2.95895230182246679567539679593, 3.20287331435200343042479137010, 4.51791994366053555474358870438, 5.35139395071938377512284261684, 6.43787476747485227933277965020, 6.92967957563006920954426504418, 7.46632166639522894215269108869, 8.139816230131963718551403911697, 8.886530643884279111147083488388