L(s) = 1 | + (−0.241 + 0.970i)3-s + (0.438 − 0.898i)4-s + (0.0121 − 0.347i)5-s + (−0.882 − 0.469i)9-s + (0.766 + 0.642i)12-s + (0.333 + 0.0957i)15-s + (−0.615 − 0.788i)16-s + (−0.306 − 0.163i)20-s + (−0.173 − 0.984i)23-s + (0.877 + 0.0613i)25-s + (0.669 − 0.743i)27-s + (1.51 + 0.213i)31-s + (−0.809 + 0.587i)36-s + (−0.0363 + 0.345i)37-s + (−0.173 + 0.300i)45-s + ⋯ |
L(s) = 1 | + (−0.241 + 0.970i)3-s + (0.438 − 0.898i)4-s + (0.0121 − 0.347i)5-s + (−0.882 − 0.469i)9-s + (0.766 + 0.642i)12-s + (0.333 + 0.0957i)15-s + (−0.615 − 0.788i)16-s + (−0.306 − 0.163i)20-s + (−0.173 − 0.984i)23-s + (0.877 + 0.0613i)25-s + (0.669 − 0.743i)27-s + (1.51 + 0.213i)31-s + (−0.809 + 0.587i)36-s + (−0.0363 + 0.345i)37-s + (−0.173 + 0.300i)45-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.780 + 0.625i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.780 + 0.625i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.193839680\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.193839680\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.241 - 0.970i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.438 + 0.898i)T^{2} \) |
| 5 | \( 1 + (-0.0121 + 0.347i)T + (-0.997 - 0.0697i)T^{2} \) |
| 7 | \( 1 + (-0.0348 + 0.999i)T^{2} \) |
| 13 | \( 1 + (0.719 - 0.694i)T^{2} \) |
| 17 | \( 1 + (0.104 + 0.994i)T^{2} \) |
| 19 | \( 1 + (0.978 - 0.207i)T^{2} \) |
| 23 | \( 1 + (0.173 + 0.984i)T + (-0.939 + 0.342i)T^{2} \) |
| 29 | \( 1 + (0.882 - 0.469i)T^{2} \) |
| 31 | \( 1 + (-1.51 - 0.213i)T + (0.961 + 0.275i)T^{2} \) |
| 37 | \( 1 + (0.0363 - 0.345i)T + (-0.978 - 0.207i)T^{2} \) |
| 41 | \( 1 + (0.882 + 0.469i)T^{2} \) |
| 43 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 47 | \( 1 + (0.823 + 1.68i)T + (-0.615 + 0.788i)T^{2} \) |
| 53 | \( 1 + (-0.473 + 1.45i)T + (-0.809 - 0.587i)T^{2} \) |
| 59 | \( 1 + (-0.856 - 1.27i)T + (-0.374 + 0.927i)T^{2} \) |
| 61 | \( 1 + (-0.961 + 0.275i)T^{2} \) |
| 67 | \( 1 + (-1.17 + 0.984i)T + (0.173 - 0.984i)T^{2} \) |
| 71 | \( 1 + (1.25 - 1.39i)T + (-0.104 - 0.994i)T^{2} \) |
| 73 | \( 1 + (-0.669 + 0.743i)T^{2} \) |
| 79 | \( 1 + (-0.438 + 0.898i)T^{2} \) |
| 83 | \( 1 + (0.719 + 0.694i)T^{2} \) |
| 89 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (0.0655 + 1.87i)T + (-0.997 + 0.0697i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.716246524798942428599973717457, −8.364952285495972095738029676060, −6.95083151738805057781106737742, −6.45700761540974467023099828023, −5.55000903132580919162518495244, −4.98011296455067868736914320845, −4.30232286945353706603505762569, −3.18437308268192175220114498579, −2.21368872522134943005625089122, −0.78825676687835719732502455731,
1.34658994825243286605514736893, 2.51828484744841125607475933042, 3.06013389209805316413962939883, 4.15799612313115770770327516847, 5.21051177076192962289869374404, 6.25997860974625992153770037987, 6.63091163695120118117300166856, 7.54792042585362251570281375794, 7.87392905804059688460807892466, 8.677439744615314809798231847705