L(s) = 1 | + (0.848 + 0.529i)3-s + (0.990 + 0.139i)4-s + (0.194 + 0.287i)5-s + (0.438 + 0.898i)9-s + (0.766 + 0.642i)12-s + (0.0121 + 0.347i)15-s + (0.961 + 0.275i)16-s + (0.152 + 0.312i)20-s + (−0.173 − 0.984i)23-s + (0.329 − 0.815i)25-s + (−0.104 + 0.994i)27-s + (−1.10 − 1.06i)31-s + (0.309 + 0.951i)36-s + (−0.339 + 0.0722i)37-s + (−0.173 + 0.300i)45-s + ⋯ |
L(s) = 1 | + (0.848 + 0.529i)3-s + (0.990 + 0.139i)4-s + (0.194 + 0.287i)5-s + (0.438 + 0.898i)9-s + (0.766 + 0.642i)12-s + (0.0121 + 0.347i)15-s + (0.961 + 0.275i)16-s + (0.152 + 0.312i)20-s + (−0.173 − 0.984i)23-s + (0.329 − 0.815i)25-s + (−0.104 + 0.994i)27-s + (−1.10 − 1.06i)31-s + (0.309 + 0.951i)36-s + (−0.339 + 0.0722i)37-s + (−0.173 + 0.300i)45-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.678 - 0.734i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.678 - 0.734i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.230004592\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.230004592\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.848 - 0.529i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.990 - 0.139i)T^{2} \) |
| 5 | \( 1 + (-0.194 - 0.287i)T + (-0.374 + 0.927i)T^{2} \) |
| 7 | \( 1 + (-0.559 - 0.829i)T^{2} \) |
| 13 | \( 1 + (0.882 + 0.469i)T^{2} \) |
| 17 | \( 1 + (0.978 + 0.207i)T^{2} \) |
| 19 | \( 1 + (-0.913 - 0.406i)T^{2} \) |
| 23 | \( 1 + (0.173 + 0.984i)T + (-0.939 + 0.342i)T^{2} \) |
| 29 | \( 1 + (-0.438 + 0.898i)T^{2} \) |
| 31 | \( 1 + (1.10 + 1.06i)T + (0.0348 + 0.999i)T^{2} \) |
| 37 | \( 1 + (0.339 - 0.0722i)T + (0.913 - 0.406i)T^{2} \) |
| 41 | \( 1 + (-0.438 - 0.898i)T^{2} \) |
| 43 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 47 | \( 1 + (1.86 - 0.261i)T + (0.961 - 0.275i)T^{2} \) |
| 53 | \( 1 + (1.23 - 0.900i)T + (0.309 - 0.951i)T^{2} \) |
| 59 | \( 1 + (0.943 - 1.20i)T + (-0.241 - 0.970i)T^{2} \) |
| 61 | \( 1 + (-0.0348 + 0.999i)T^{2} \) |
| 67 | \( 1 + (-1.17 + 0.984i)T + (0.173 - 0.984i)T^{2} \) |
| 71 | \( 1 + (-0.196 + 1.86i)T + (-0.978 - 0.207i)T^{2} \) |
| 73 | \( 1 + (0.104 - 0.994i)T^{2} \) |
| 79 | \( 1 + (-0.990 - 0.139i)T^{2} \) |
| 83 | \( 1 + (0.882 - 0.469i)T^{2} \) |
| 89 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (1.05 - 1.55i)T + (-0.374 - 0.927i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.976936863968865578028225167269, −7.985226984998374166432933372178, −7.67713307576127856242046543416, −6.66388007420520096137495277248, −6.11063615845759152528347669963, −5.01086584447541748678942268240, −4.12169208942505485625628809896, −3.20545598068377814103627879102, −2.53414665220086209248899717660, −1.71375073558755386762051288790,
1.40470458283148781529755115434, 1.98975326336163472577572265463, 3.12605791648857449031212808300, 3.65268341973964640695031185196, 5.06020421503548414906469472664, 5.78418806136414986409747419730, 6.82762687731641417225478150979, 7.07805665650930320622031487392, 8.012520709576343049629035908563, 8.553904191098403958093766194518