L(s) = 1 | + (0.0348 + 0.999i)3-s + (−0.374 + 0.927i)4-s + (0.671 + 1.37i)5-s + (−0.997 + 0.0697i)9-s + (−0.939 − 0.342i)12-s + (−1.35 + 0.719i)15-s + (−0.719 − 0.694i)16-s + (−1.52 + 0.106i)20-s + (−0.766 − 0.642i)23-s + (−0.829 + 1.06i)25-s + (−0.104 − 0.994i)27-s + (0.454 + 1.82i)31-s + (0.309 − 0.951i)36-s + (−1.49 − 0.318i)37-s + (−0.766 − 1.32i)45-s + ⋯ |
L(s) = 1 | + (0.0348 + 0.999i)3-s + (−0.374 + 0.927i)4-s + (0.671 + 1.37i)5-s + (−0.997 + 0.0697i)9-s + (−0.939 − 0.342i)12-s + (−1.35 + 0.719i)15-s + (−0.719 − 0.694i)16-s + (−1.52 + 0.106i)20-s + (−0.766 − 0.642i)23-s + (−0.829 + 1.06i)25-s + (−0.104 − 0.994i)27-s + (0.454 + 1.82i)31-s + (0.309 − 0.951i)36-s + (−1.49 − 0.318i)37-s + (−0.766 − 1.32i)45-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.975 + 0.219i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.975 + 0.219i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.033436507\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.033436507\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.0348 - 0.999i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.374 - 0.927i)T^{2} \) |
| 5 | \( 1 + (-0.671 - 1.37i)T + (-0.615 + 0.788i)T^{2} \) |
| 7 | \( 1 + (-0.438 - 0.898i)T^{2} \) |
| 13 | \( 1 + (-0.848 - 0.529i)T^{2} \) |
| 17 | \( 1 + (0.978 - 0.207i)T^{2} \) |
| 19 | \( 1 + (-0.913 + 0.406i)T^{2} \) |
| 23 | \( 1 + (0.766 + 0.642i)T + (0.173 + 0.984i)T^{2} \) |
| 29 | \( 1 + (0.997 + 0.0697i)T^{2} \) |
| 31 | \( 1 + (-0.454 - 1.82i)T + (-0.882 + 0.469i)T^{2} \) |
| 37 | \( 1 + (1.49 + 0.318i)T + (0.913 + 0.406i)T^{2} \) |
| 41 | \( 1 + (0.997 - 0.0697i)T^{2} \) |
| 43 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 47 | \( 1 + (0.130 + 0.322i)T + (-0.719 + 0.694i)T^{2} \) |
| 53 | \( 1 + (-1.52 - 1.10i)T + (0.309 + 0.951i)T^{2} \) |
| 59 | \( 1 + (1.86 - 0.261i)T + (0.961 - 0.275i)T^{2} \) |
| 61 | \( 1 + (0.882 + 0.469i)T^{2} \) |
| 67 | \( 1 + (-1.76 + 0.642i)T + (0.766 - 0.642i)T^{2} \) |
| 71 | \( 1 + (0.0363 + 0.345i)T + (-0.978 + 0.207i)T^{2} \) |
| 73 | \( 1 + (0.104 + 0.994i)T^{2} \) |
| 79 | \( 1 + (0.374 - 0.927i)T^{2} \) |
| 83 | \( 1 + (-0.848 + 0.529i)T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.152 + 0.312i)T + (-0.615 - 0.788i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.163691875044275139721241129125, −8.656960534827194305659851194525, −7.78587809576762266489894740611, −6.94955176095427793570899953997, −6.27690657958335047845512974639, −5.35244606358748322326864709834, −4.49773144400840864106648606993, −3.59982103746515758633815157196, −3.02581071231501398260372964040, −2.24115796663308787247774337896,
0.60785079986049719637201268572, 1.60282010808325718558881819902, 2.23458574459395686682136314870, 3.82611480385635774073704762827, 4.86769217470825353711110381614, 5.50173566643029886922456687498, 5.99786858720630045207262472812, 6.79186307505036459283362161135, 7.83460119904702094624985863111, 8.514397184208831706938746101527