L(s) = 1 | + (0.559 − 0.829i)3-s + (−0.241 − 0.970i)4-s + (1.51 − 0.213i)5-s + (−0.374 − 0.927i)9-s + (−0.939 − 0.342i)12-s + (0.671 − 1.37i)15-s + (−0.882 + 0.469i)16-s + (−0.573 − 1.42i)20-s + (−0.766 − 0.642i)23-s + (1.29 − 0.371i)25-s + (−0.978 − 0.207i)27-s + (−1.59 + 0.995i)31-s + (−0.809 + 0.587i)36-s + (1.39 − 0.623i)37-s + (−0.766 − 1.32i)45-s + ⋯ |
L(s) = 1 | + (0.559 − 0.829i)3-s + (−0.241 − 0.970i)4-s + (1.51 − 0.213i)5-s + (−0.374 − 0.927i)9-s + (−0.939 − 0.342i)12-s + (0.671 − 1.37i)15-s + (−0.882 + 0.469i)16-s + (−0.573 − 1.42i)20-s + (−0.766 − 0.642i)23-s + (1.29 − 0.371i)25-s + (−0.978 − 0.207i)27-s + (−1.59 + 0.995i)31-s + (−0.809 + 0.587i)36-s + (1.39 − 0.623i)37-s + (−0.766 − 1.32i)45-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.375 + 0.926i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.375 + 0.926i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.786408487\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.786408487\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.559 + 0.829i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.241 + 0.970i)T^{2} \) |
| 5 | \( 1 + (-1.51 + 0.213i)T + (0.961 - 0.275i)T^{2} \) |
| 7 | \( 1 + (-0.990 + 0.139i)T^{2} \) |
| 13 | \( 1 + (0.997 - 0.0697i)T^{2} \) |
| 17 | \( 1 + (-0.913 - 0.406i)T^{2} \) |
| 19 | \( 1 + (-0.669 - 0.743i)T^{2} \) |
| 23 | \( 1 + (0.766 + 0.642i)T + (0.173 + 0.984i)T^{2} \) |
| 29 | \( 1 + (0.374 - 0.927i)T^{2} \) |
| 31 | \( 1 + (1.59 - 0.995i)T + (0.438 - 0.898i)T^{2} \) |
| 37 | \( 1 + (-1.39 + 0.623i)T + (0.669 - 0.743i)T^{2} \) |
| 41 | \( 1 + (0.374 + 0.927i)T^{2} \) |
| 43 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 47 | \( 1 + (0.0840 - 0.336i)T + (-0.882 - 0.469i)T^{2} \) |
| 53 | \( 1 + (0.580 - 1.78i)T + (-0.809 - 0.587i)T^{2} \) |
| 59 | \( 1 + (-1.35 + 1.30i)T + (0.0348 - 0.999i)T^{2} \) |
| 61 | \( 1 + (-0.438 - 0.898i)T^{2} \) |
| 67 | \( 1 + (-1.76 + 0.642i)T + (0.766 - 0.642i)T^{2} \) |
| 71 | \( 1 + (0.339 + 0.0722i)T + (0.913 + 0.406i)T^{2} \) |
| 73 | \( 1 + (0.978 + 0.207i)T^{2} \) |
| 79 | \( 1 + (0.241 + 0.970i)T^{2} \) |
| 83 | \( 1 + (0.997 + 0.0697i)T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.343 - 0.0483i)T + (0.961 + 0.275i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.835754149481946115670612738028, −7.899523226743529627661256063010, −6.91560843273602982136007151691, −6.25488260425500558222685199277, −5.74085828717155661688812799077, −5.02861753511235055719268600091, −3.86734588228430920674782758103, −2.49905087658035311484361147937, −1.94121503781780620430441310535, −1.02598634844592131122544471573,
1.98202009993201904432425604784, 2.60339973539211482239120303861, 3.57038134160755737689215600815, 4.25799779548341582951235670198, 5.29133246429576600652105896004, 5.84548244519616445426225303525, 6.90400759651304721491827617923, 7.73021452716980329804538863970, 8.445045002589601251475997223408, 9.164845385702501856446375828669