L(s) = 1 | + (0.939 − 0.342i)3-s + (0.766 + 0.642i)4-s + (−1.26 − 0.223i)5-s + (0.766 − 0.642i)9-s + (0.939 + 0.342i)12-s + (−1.26 + 0.223i)15-s + (0.173 + 0.984i)16-s + (−0.826 − 0.984i)20-s + (1.11 − 1.32i)23-s + (0.613 + 0.223i)25-s + (0.500 − 0.866i)27-s + (1.43 + 1.20i)31-s + 36-s + (0.766 − 1.32i)37-s + (−1.11 + 0.642i)45-s + ⋯ |
L(s) = 1 | + (0.939 − 0.342i)3-s + (0.766 + 0.642i)4-s + (−1.26 − 0.223i)5-s + (0.766 − 0.642i)9-s + (0.939 + 0.342i)12-s + (−1.26 + 0.223i)15-s + (0.173 + 0.984i)16-s + (−0.826 − 0.984i)20-s + (1.11 − 1.32i)23-s + (0.613 + 0.223i)25-s + (0.500 − 0.866i)27-s + (1.43 + 1.20i)31-s + 36-s + (0.766 − 1.32i)37-s + (−1.11 + 0.642i)45-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.993 + 0.116i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.993 + 0.116i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.774105816\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.774105816\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.939 + 0.342i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 5 | \( 1 + (1.26 + 0.223i)T + (0.939 + 0.342i)T^{2} \) |
| 7 | \( 1 + (0.173 - 0.984i)T^{2} \) |
| 13 | \( 1 + (0.766 - 0.642i)T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-1.11 + 1.32i)T + (-0.173 - 0.984i)T^{2} \) |
| 29 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 31 | \( 1 + (-1.43 - 1.20i)T + (0.173 + 0.984i)T^{2} \) |
| 37 | \( 1 + (-0.766 + 1.32i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 43 | \( 1 + (-0.939 + 0.342i)T^{2} \) |
| 47 | \( 1 + (-1.26 - 1.50i)T + (-0.173 + 0.984i)T^{2} \) |
| 53 | \( 1 + 0.684iT - T^{2} \) |
| 59 | \( 1 + (-0.673 - 0.118i)T + (0.939 + 0.342i)T^{2} \) |
| 61 | \( 1 + (0.173 - 0.984i)T^{2} \) |
| 67 | \( 1 + (1.76 - 0.642i)T + (0.766 - 0.642i)T^{2} \) |
| 71 | \( 1 + (1.70 + 0.984i)T + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.766 + 0.642i)T^{2} \) |
| 83 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 89 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.0603 - 0.342i)T + (-0.939 + 0.342i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.603832042936494714814497926793, −8.036161870456436092535755129015, −7.42213160355322890678131664661, −6.91693023974103340121958485480, −6.08516411219401110299098690591, −4.54320704668175392370062628525, −4.08162600668159128520671153046, −3.04405335082360835359014651983, −2.61979814579062458905152562597, −1.19058572886936486759117684068,
1.25772394459459126218881973657, 2.52533307895191921441656512327, 3.20059540189718734433738952548, 4.06068017359096395147018676510, 4.85364857811297964366063310576, 5.83288670562103367301706938391, 6.90175270957282161081453641918, 7.40196084390809967422998622291, 8.001643757758017533400275554669, 8.763381001254030246534307556255