L(s) = 1 | + (0.309 − 0.951i)4-s + (−1.83 − 0.596i)7-s + (0.304 + 0.418i)13-s + (−0.809 − 0.587i)16-s + (−1.34 + 0.437i)19-s + (−0.309 − 0.951i)25-s + (−1.13 + 1.56i)28-s + (−1.40 + 1.01i)31-s − 1.41i·43-s + (2.21 + 1.60i)49-s + (0.492 − 0.159i)52-s + (−0.831 + 1.14i)61-s + (−0.809 + 0.587i)64-s − 1.73·67-s + (−0.492 − 0.159i)73-s + ⋯ |
L(s) = 1 | + (0.309 − 0.951i)4-s + (−1.83 − 0.596i)7-s + (0.304 + 0.418i)13-s + (−0.809 − 0.587i)16-s + (−1.34 + 0.437i)19-s + (−0.309 − 0.951i)25-s + (−1.13 + 1.56i)28-s + (−1.40 + 1.01i)31-s − 1.41i·43-s + (2.21 + 1.60i)49-s + (0.492 − 0.159i)52-s + (−0.831 + 1.14i)61-s + (−0.809 + 0.587i)64-s − 1.73·67-s + (−0.492 − 0.159i)73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.969 - 0.245i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.969 - 0.245i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2814035339\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2814035339\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 5 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 7 | \( 1 + (1.83 + 0.596i)T + (0.809 + 0.587i)T^{2} \) |
| 13 | \( 1 + (-0.304 - 0.418i)T + (-0.309 + 0.951i)T^{2} \) |
| 17 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 19 | \( 1 + (1.34 - 0.437i)T + (0.809 - 0.587i)T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 31 | \( 1 + (1.40 - 1.01i)T + (0.309 - 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 41 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 43 | \( 1 + 1.41iT - T^{2} \) |
| 47 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 53 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 59 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 61 | \( 1 + (0.831 - 1.14i)T + (-0.309 - 0.951i)T^{2} \) |
| 67 | \( 1 + 1.73T + T^{2} \) |
| 71 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (0.492 + 0.159i)T + (0.809 + 0.587i)T^{2} \) |
| 79 | \( 1 + (0.304 + 0.418i)T + (-0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (0.809 - 0.587i)T + (0.309 - 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.709741581406830751127542904935, −7.36890440183870921641968434093, −6.81208981858364561726121642537, −6.19530651296143474492933288812, −5.68926862580309376658556635020, −4.43987910172009155018175336989, −3.72729047365320498732631439077, −2.73158617323826797637217215702, −1.65383512614875707759921920346, −0.15258689065323235842523057926,
2.09112482333349634024479048526, 2.98738465729378153963531781143, 3.52747787912402605060295333950, 4.39645062846893636768718656376, 5.74198513557267096752641050781, 6.25632512553464191221870340413, 6.97182912173584667892716283589, 7.67782804496646100838645389234, 8.576521189996604884775192467180, 9.179963402800902264464744338325