L(s) = 1 | + (0.309 − 0.951i)4-s + (−1.83 − 0.596i)7-s + (0.304 + 0.418i)13-s + (−0.809 − 0.587i)16-s + (−1.34 + 0.437i)19-s + (−0.309 − 0.951i)25-s + (−1.13 + 1.56i)28-s + (−1.40 + 1.01i)31-s − 1.41i·43-s + (2.21 + 1.60i)49-s + (0.492 − 0.159i)52-s + (−0.831 + 1.14i)61-s + (−0.809 + 0.587i)64-s − 1.73·67-s + (−0.492 − 0.159i)73-s + ⋯ |
L(s) = 1 | + (0.309 − 0.951i)4-s + (−1.83 − 0.596i)7-s + (0.304 + 0.418i)13-s + (−0.809 − 0.587i)16-s + (−1.34 + 0.437i)19-s + (−0.309 − 0.951i)25-s + (−1.13 + 1.56i)28-s + (−1.40 + 1.01i)31-s − 1.41i·43-s + (2.21 + 1.60i)49-s + (0.492 − 0.159i)52-s + (−0.831 + 1.14i)61-s + (−0.809 + 0.587i)64-s − 1.73·67-s + (−0.492 − 0.159i)73-s + ⋯ |
Λ(s)=(=(3267s/2ΓC(s)L(s)(−0.969−0.245i)Λ(1−s)
Λ(s)=(=(3267s/2ΓC(s)L(s)(−0.969−0.245i)Λ(1−s)
Degree: |
2 |
Conductor: |
3267
= 33⋅112
|
Sign: |
−0.969−0.245i
|
Analytic conductor: |
1.63044 |
Root analytic conductor: |
1.27688 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3267(2296,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3267, ( :0), −0.969−0.245i)
|
Particular Values
L(21) |
≈ |
0.2814035339 |
L(21) |
≈ |
0.2814035339 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1 |
good | 2 | 1+(−0.309+0.951i)T2 |
| 5 | 1+(0.309+0.951i)T2 |
| 7 | 1+(1.83+0.596i)T+(0.809+0.587i)T2 |
| 13 | 1+(−0.304−0.418i)T+(−0.309+0.951i)T2 |
| 17 | 1+(−0.309−0.951i)T2 |
| 19 | 1+(1.34−0.437i)T+(0.809−0.587i)T2 |
| 23 | 1+T2 |
| 29 | 1+(0.809+0.587i)T2 |
| 31 | 1+(1.40−1.01i)T+(0.309−0.951i)T2 |
| 37 | 1+(−0.809−0.587i)T2 |
| 41 | 1+(0.809−0.587i)T2 |
| 43 | 1+1.41iT−T2 |
| 47 | 1+(−0.809+0.587i)T2 |
| 53 | 1+(0.309−0.951i)T2 |
| 59 | 1+(−0.809−0.587i)T2 |
| 61 | 1+(0.831−1.14i)T+(−0.309−0.951i)T2 |
| 67 | 1+1.73T+T2 |
| 71 | 1+(0.309+0.951i)T2 |
| 73 | 1+(0.492+0.159i)T+(0.809+0.587i)T2 |
| 79 | 1+(0.304+0.418i)T+(−0.309+0.951i)T2 |
| 83 | 1+(−0.309−0.951i)T2 |
| 89 | 1+T2 |
| 97 | 1+(0.809−0.587i)T+(0.309−0.951i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.709741581406830751127542904935, −7.36890440183870921641968434093, −6.81208981858364561726121642537, −6.19530651296143474492933288812, −5.68926862580309376658556635020, −4.43987910172009155018175336989, −3.72729047365320498732631439077, −2.73158617323826797637217215702, −1.65383512614875707759921920346, −0.15258689065323235842523057926,
2.09112482333349634024479048526, 2.98738465729378153963531781143, 3.52747787912402605060295333950, 4.39645062846893636768718656376, 5.74198513557267096752641050781, 6.25632512553464191221870340413, 6.97182912173584667892716283589, 7.67782804496646100838645389234, 8.576521189996604884775192467180, 9.179963402800902264464744338325