L(s) = 1 | + 4-s + 0.517i·7-s + 1.93i·13-s + 16-s + 1.41i·19-s − 25-s + 0.517i·28-s − 1.73·31-s − 1.41i·43-s + 0.732·49-s + 1.93i·52-s − 1.41i·61-s + 64-s + 1.73·67-s + 1.93i·73-s + ⋯ |
L(s) = 1 | + 4-s + 0.517i·7-s + 1.93i·13-s + 16-s + 1.41i·19-s − 25-s + 0.517i·28-s − 1.73·31-s − 1.41i·43-s + 0.732·49-s + 1.93i·52-s − 1.41i·61-s + 64-s + 1.73·67-s + 1.93i·73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.522 - 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.522 - 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.536986232\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.536986232\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 - T^{2} \) |
| 5 | \( 1 + T^{2} \) |
| 7 | \( 1 - 0.517iT - T^{2} \) |
| 13 | \( 1 - 1.93iT - T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 - 1.41iT - T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + 1.73T + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + 1.41iT - T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 + 1.41iT - T^{2} \) |
| 67 | \( 1 - 1.73T + T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 - 1.93iT - T^{2} \) |
| 79 | \( 1 + 1.93iT - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.972913020748751643222746122869, −8.148198566491282453877487706603, −7.33473840741194380848079114498, −6.75574595240329875711417235166, −5.96527130959385211439344471664, −5.38588173126502152311447486104, −4.10294859997713759860091138422, −3.48356403681026982115537413227, −2.08904261085142173650190533901, −1.80857182052585382954070619772,
0.895633476524245239422701637981, 2.22634970037347322430525235748, 3.05550009227584157588296114351, 3.82070752023145197271420709173, 5.05556988636564458177397510377, 5.71557868154761541621362927897, 6.48615943713975337362666996633, 7.42491528764338064156200076446, 7.66212898031622835293350544831, 8.581398774273914779198166497835