Properties

Label 2-325-65.64-c1-0-2
Degree $2$
Conductor $325$
Sign $-0.868 - 0.496i$
Analytic cond. $2.59513$
Root an. cond. $1.61094$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 2i·3-s − 4-s + 2i·6-s − 5·7-s − 3·8-s − 9-s + 3i·11-s − 2i·12-s + (2 + 3i)13-s − 5·14-s − 16-s + 5i·17-s − 18-s − 4i·19-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.15i·3-s − 0.5·4-s + 0.816i·6-s − 1.88·7-s − 1.06·8-s − 0.333·9-s + 0.904i·11-s − 0.577i·12-s + (0.554 + 0.832i)13-s − 1.33·14-s − 0.250·16-s + 1.21i·17-s − 0.235·18-s − 0.917i·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.868 - 0.496i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.868 - 0.496i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(325\)    =    \(5^{2} \cdot 13\)
Sign: $-0.868 - 0.496i$
Analytic conductor: \(2.59513\)
Root analytic conductor: \(1.61094\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{325} (324, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 325,\ (\ :1/2),\ -0.868 - 0.496i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.245229 + 0.923426i\)
\(L(\frac12)\) \(\approx\) \(0.245229 + 0.923426i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
13 \( 1 + (-2 - 3i)T \)
good2 \( 1 - T + 2T^{2} \)
3 \( 1 - 2iT - 3T^{2} \)
7 \( 1 + 5T + 7T^{2} \)
11 \( 1 - 3iT - 11T^{2} \)
17 \( 1 - 5iT - 17T^{2} \)
19 \( 1 + 4iT - 19T^{2} \)
23 \( 1 + 4iT - 23T^{2} \)
29 \( 1 - T + 29T^{2} \)
31 \( 1 + iT - 31T^{2} \)
37 \( 1 - 4T + 37T^{2} \)
41 \( 1 - 8iT - 41T^{2} \)
43 \( 1 - 4iT - 43T^{2} \)
47 \( 1 + 7T + 47T^{2} \)
53 \( 1 - 3iT - 53T^{2} \)
59 \( 1 - 3iT - 59T^{2} \)
61 \( 1 - T + 61T^{2} \)
67 \( 1 - 3T + 67T^{2} \)
71 \( 1 + 8iT - 71T^{2} \)
73 \( 1 + 4T + 73T^{2} \)
79 \( 1 + 10T + 79T^{2} \)
83 \( 1 - 9T + 83T^{2} \)
89 \( 1 - 18iT - 89T^{2} \)
97 \( 1 + 14T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.31017665064930935619432735106, −10.94359805970180455673704250792, −9.824905212786396515507962962580, −9.551136668652097020734700477737, −8.621712734471143870661999535949, −6.76102674273666522072594064665, −6.03883018900617025019053152179, −4.62149057130139708810611235015, −4.01648289809901815639572885461, −3.01544079190678691384995975550, 0.54569473341836565898502453766, 2.94646835826188193449742398189, 3.70965379229977940462542516538, 5.55501313256729649864546186147, 6.18477877716931107907457986216, 7.12726850467944314828658979872, 8.315337011117911518015507033346, 9.348761342303144871886242766848, 10.18292889967561324323116744434, 11.69444641333483352070915432507

Graph of the $Z$-function along the critical line