| L(s) = 1 | + 2-s + 2i·3-s − 4-s + 2i·6-s − 5·7-s − 3·8-s − 9-s + 3i·11-s − 2i·12-s + (2 + 3i)13-s − 5·14-s − 16-s + 5i·17-s − 18-s − 4i·19-s + ⋯ |
| L(s) = 1 | + 0.707·2-s + 1.15i·3-s − 0.5·4-s + 0.816i·6-s − 1.88·7-s − 1.06·8-s − 0.333·9-s + 0.904i·11-s − 0.577i·12-s + (0.554 + 0.832i)13-s − 1.33·14-s − 0.250·16-s + 1.21i·17-s − 0.235·18-s − 0.917i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.868 - 0.496i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.868 - 0.496i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.245229 + 0.923426i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.245229 + 0.923426i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 13 | \( 1 + (-2 - 3i)T \) |
| good | 2 | \( 1 - T + 2T^{2} \) |
| 3 | \( 1 - 2iT - 3T^{2} \) |
| 7 | \( 1 + 5T + 7T^{2} \) |
| 11 | \( 1 - 3iT - 11T^{2} \) |
| 17 | \( 1 - 5iT - 17T^{2} \) |
| 19 | \( 1 + 4iT - 19T^{2} \) |
| 23 | \( 1 + 4iT - 23T^{2} \) |
| 29 | \( 1 - T + 29T^{2} \) |
| 31 | \( 1 + iT - 31T^{2} \) |
| 37 | \( 1 - 4T + 37T^{2} \) |
| 41 | \( 1 - 8iT - 41T^{2} \) |
| 43 | \( 1 - 4iT - 43T^{2} \) |
| 47 | \( 1 + 7T + 47T^{2} \) |
| 53 | \( 1 - 3iT - 53T^{2} \) |
| 59 | \( 1 - 3iT - 59T^{2} \) |
| 61 | \( 1 - T + 61T^{2} \) |
| 67 | \( 1 - 3T + 67T^{2} \) |
| 71 | \( 1 + 8iT - 71T^{2} \) |
| 73 | \( 1 + 4T + 73T^{2} \) |
| 79 | \( 1 + 10T + 79T^{2} \) |
| 83 | \( 1 - 9T + 83T^{2} \) |
| 89 | \( 1 - 18iT - 89T^{2} \) |
| 97 | \( 1 + 14T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.31017665064930935619432735106, −10.94359805970180455673704250792, −9.824905212786396515507962962580, −9.551136668652097020734700477737, −8.621712734471143870661999535949, −6.76102674273666522072594064665, −6.03883018900617025019053152179, −4.62149057130139708810611235015, −4.01648289809901815639572885461, −3.01544079190678691384995975550,
0.54569473341836565898502453766, 2.94646835826188193449742398189, 3.70965379229977940462542516538, 5.55501313256729649864546186147, 6.18477877716931107907457986216, 7.12726850467944314828658979872, 8.315337011117911518015507033346, 9.348761342303144871886242766848, 10.18292889967561324323116744434, 11.69444641333483352070915432507