Properties

Label 2-325-5.4-c5-0-69
Degree $2$
Conductor $325$
Sign $0.894 + 0.447i$
Analytic cond. $52.1247$
Root an. cond. $7.21974$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5i·2-s − 6i·3-s + 7·4-s + 30·6-s − 244i·7-s + 195i·8-s + 207·9-s + 794·11-s − 42i·12-s + 169i·13-s + 1.22e3·14-s − 751·16-s − 1.53e3i·17-s + 1.03e3i·18-s − 2.70e3·19-s + ⋯
L(s)  = 1  + 0.883i·2-s − 0.384i·3-s + 0.218·4-s + 0.340·6-s − 1.88i·7-s + 1.07i·8-s + 0.851·9-s + 1.97·11-s − 0.0841i·12-s + 0.277i·13-s + 1.66·14-s − 0.733·16-s − 1.28i·17-s + 0.752i·18-s − 1.71·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(325\)    =    \(5^{2} \cdot 13\)
Sign: $0.894 + 0.447i$
Analytic conductor: \(52.1247\)
Root analytic conductor: \(7.21974\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{325} (274, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 325,\ (\ :5/2),\ 0.894 + 0.447i)\)

Particular Values

\(L(3)\) \(\approx\) \(2.779432081\)
\(L(\frac12)\) \(\approx\) \(2.779432081\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
13 \( 1 - 169iT \)
good2 \( 1 - 5iT - 32T^{2} \)
3 \( 1 + 6iT - 243T^{2} \)
7 \( 1 + 244iT - 1.68e4T^{2} \)
11 \( 1 - 794T + 1.61e5T^{2} \)
17 \( 1 + 1.53e3iT - 1.41e6T^{2} \)
19 \( 1 + 2.70e3T + 2.47e6T^{2} \)
23 \( 1 - 702iT - 6.43e6T^{2} \)
29 \( 1 - 5.03e3T + 2.05e7T^{2} \)
31 \( 1 + 3.63e3T + 2.86e7T^{2} \)
37 \( 1 + 7.05e3iT - 6.93e7T^{2} \)
41 \( 1 + 294T + 1.15e8T^{2} \)
43 \( 1 + 7.61e3iT - 1.47e8T^{2} \)
47 \( 1 + 3.02e3iT - 2.29e8T^{2} \)
53 \( 1 + 626iT - 4.18e8T^{2} \)
59 \( 1 - 3.00e4T + 7.14e8T^{2} \)
61 \( 1 + 5.80e3T + 8.44e8T^{2} \)
67 \( 1 + 1.24e4iT - 1.35e9T^{2} \)
71 \( 1 - 4.73e3T + 1.80e9T^{2} \)
73 \( 1 - 1.46e4iT - 2.07e9T^{2} \)
79 \( 1 - 3.98e4T + 3.07e9T^{2} \)
83 \( 1 - 4.17e4iT - 3.93e9T^{2} \)
89 \( 1 + 7.97e3T + 5.58e9T^{2} \)
97 \( 1 + 7.80e4iT - 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.75748950898616657756193283329, −9.730524335571496620734177231365, −8.586648962569661670380884630007, −7.34318604133491691675136190807, −6.94583284412465461775232356622, −6.36234121000902572909798993348, −4.59627163949371334436113529157, −3.84284579471849154955712984821, −1.84587647708430760271383295688, −0.74977133569411520478731274601, 1.40034635527023718921485214108, 2.21792017983873206676462031995, 3.55006360939905682187576633600, 4.48012680351800343502577175334, 6.14619396535552541230593474087, 6.61946179173071080713170516950, 8.432270618504920561227273063467, 9.136078248987469149855786524773, 10.00279361484659106920487348075, 10.90704668785456674378082875608

Graph of the $Z$-function along the critical line